Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+4x^2+x-6\)
\(=\left(x^3-x^2\right)+\left(5x^2-5x\right)+\left(6x-6\right)\)
\(=x^2\left(x-1\right)+5x\left(x-1\right)+6\left(x-1\right)\)
\(=\left(x-1\right).\left(x^2+5x+6\right)\)
\(=\left(x-1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)
\(=\left(x-1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x+3\right)\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+2=0\\x+3=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\\x=-3\end{array}\right.\)
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
Ta có : \(B\left(x\right)=x^4-x^2-6=0\)
\(\Leftrightarrow x^4-3x^2+2x^2-6=0\Leftrightarrow x^2\left(x^2-3\right)+2\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2+2>0\right)\left(x^2-3\right)=0\Leftrightarrow x=\pm\sqrt{3}\)
\(C\left(x\right)=x^4-5x^2+4=0\)
\(\Leftrightarrow x^4-4x^2-x^2+4=0\Leftrightarrow x^2\left(x^2-4\right)-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\Leftrightarrow x=1;-1;2;-2\)
Phân tích đa thức thành nhân tử thôi bạn :
Ta có :
\(h\left(x\right)=x^2+5x+6\)
\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)
\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)
\(\Rightarrow N_oh\left(x\right)=-2;-3\)
\(g\left(x\right)=2x^2+7x-9\)
\(g\left(x\right)=2x^2+9x-2x-9\)
\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)
\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)
\(\Rightarrow N_og\left(x\right)=1;-4,5\)
Phân tích đa thức thành nhân tử chứ nhỉ ???
\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right).\left(x+1\right)\left(x^2-x+1\right)\)
Do đa thức có nghiệm nên ta gọi k là một ngiệm của đa thức đó
Do P(x) là đa thức bậc ba nên \(P\left(x\right)=\left(x-k\right)\left(x^2+mx+n\right)\)
\(=x^3+mx^2+xn-kx^2-kmx-kn\)
\(=x^3+\left(m-k\right)x^2+\left(n-km\right)x-kn\)
Đồng nhất hệ số, ta được: \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)
Thay \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)vào hệ thức \(a+2b+4c=-\frac{1}{2}\),ta được:
\(\left(m-k\right)+2\left(n-km\right)-4kn=-\frac{1}{2}\)
\(\Leftrightarrow m-k+2n-2km-4kn=-\frac{1}{2}\)
\(\Leftrightarrow k\left(-1-2m-4n\right)+\left(m+2n\right)=-\frac{1}{2}\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)+2\left(m+2n\right)=-1\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)=\left(-1-2m-4n\right)\)
\(\Rightarrow2k=1\Rightarrow k=\frac{1}{2}\)
Vậy 1 nghiệm của đa thức là \(\frac{1}{2}\)
a/ \(x^3-5x^2+6x+3=\left(x-2\right)\left(x^2-3x\right)+3.\)( Dùng phép chia đa thức)
Để A chia hết cho x-2 thì 3 phải chia hết cho x-2 => x-2 là ước của 3
=> x-2={3-; -1; 1; 3} => x={-1; 1; 3; 5}
b/ Chia F(x) cho x-1
\(f\left(x\right)=\left(x-1\right)\left(x^2-5x+6\right)\)
Giải phương trình bậc 2 \(x^2-5x+6=0\) để tìm nghiệm còn lại
Đa thức \(f\left(x\right)=x^2-x+6\) có nghiệm \(x=a\) khi \(f\left(a\right)=a^2-a+6=0\)
\(\Leftrightarrow a^2-3a+2a-6=0\Leftrightarrow a\left(a-3\right)+2\left(a-3\right)=0\)\(\Leftrightarrow\left(a-3\right)\left(a+2\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-2\end{matrix}\right.\)
Vậy đa thức đã cho có 2 nghiệm là 3 và -2