Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét f(x)=x2-3x-4=0
=>x2-4x+x-4=0
=>x(x-4)+(x-4)=0
=>(x+1)(x-4)=0=>x=4 hoặc x=-1
\(f_{\left(x\right)}=3x+3=0\)
\(\Rightarrow\)\(3x=-3\)
\(\Rightarrow\)\(x=-1\)
vậy...
\(f\left(x\right)=x^2-3x\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Cho F(x)= 0
hay \(x^2-3x=0\)
\(x.x-3x=0\)
\(x.\left(x-3\right)=0\)
⇒ \(x=0\) hoặc \(x-3=0\)
⇒ \(x=0\) hoặc \(x\) \(=0+3=3\)
Vậy \(x=0\) hoặc \(x=3\) là nghiệm của đa thức F(x)
a,G(x)=2x-6
<=>2x-6=0
<=>2x=6
<=>x=3
Vậy nghiệm của G(x) là 3
b,hệ số là 0
a,2x-6=0
<=>x=3
b,\(a^2-3.\left(-2\right)+18=0\Leftrightarrow a^2=-24\)(Vô nghiệm)
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
1. x = 1
2. a) ko có nghiệm vì x2 lớn hơn 0
=> x2 - 5x + 4 lớn hơn hoặc bằng 4 > 0
b) cx ko có nghiệm (giải thích như câu a)
Đa thức có nghiệm khi \(f\left(x\right)=0\)
\(\Rightarrow x^2-3x+2=0\Rightarrow x^2-x-2x+2=0\)
\(\Rightarrow x\left(x-2\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy nghiệm của đa thức là \(x=1\) và \(x=2\)