Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
\(M\left(x\right)=2x+5\)
Ta có: \(M\left(x\right)\)\(=0\)
\(\Rightarrow2x+5=0\)
\(\Rightarrow2x=-5\)
\(\Rightarrow x=\frac{-5}{2}\)
Vậy \(x=\frac{-5}{2}\)là nghiệm của đa thức \(M\left(x\right)\)
Hc tốt #
8:
a: M(x)=x^4+2x^2+1
N(x)=x^4+2x^2-3x-14
P(x)=M(x)-N(x)=3x+15
P(x)=0
=>3x+15=0
=>x=-5
b: M(x)=x^2(x^2+1)+1>0
=>M(x) vô nghiệm
Để cho H(x) có nghiệm thì \(-\dfrac{1}{5}x-1=0\)
\(\Leftrightarrow-x-5=0\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Để cho M(x) có nghiệm thì \(2x^2+4x=0\)
\(\Leftrightarrow2x\left(x+2\right)=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
a: Đặt M=0
=>2x-12=0
hay x=12
b: Đặt N=0
=>x+5-4x-1=0
=>-3x+4=0
hay x=4/3