K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

a, n3 + 5

= n3 - n + 6n

= n.(n2 - 1) + 6n

= n.(n - 1).(n + 1) + 6n

Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6

=> n3 + 5n chia hết cho 6 ( đpcm)

4 tháng 8 2016

a, n3 + 5

= n3 - n + 6n

= n.(n2 - 1) + 6n

= n.(n - 1).(n + 1) + 6n

Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6

=> n3 + 5n chia hết cho 6 ( đpcm)

17 tháng 5 2016

Ta thấy \(n^2+n+1=n\left(n+1\right)+1\)

\(n\left(n+1\right)\) chỉ có tận cùng là 0 , 2, 4 nên \(n^2+n+1\) chỉ có tận  cùng là 1, 3, 7. 

Như vậy \(n^2+n+1\) không chia hết cho 10, từ đó suy ra nó không chia hết cho 2010. 

Vậy không tìm được số tự nhiên n sao cho \(n^2+n+1\) chia hết 2010.

Chúc em học tốt ^^

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

23 tháng 9 2015

bài này hn mk ms đc học 

55n+1 - 55n    (ms đúng chứ)

= 55n   . 55 - 55n

=55.(55-1) 

= 55. 54 

Vậy 55n+1 - 55n chia hết cho 54

11 tháng 7 2016

55n+1-55n=55n.(55-1)=55n.54 chia hết cho 54

Vậy 55n+1 chia hết cho 54

11 tháng 7 2016

Ta có:\(55^{n+1}-55^n\)

\(=55^n.55-55^n\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\) chia hết cho 54

Vậy \(55^{n+1}-55^n\) chia hết cho 54 với n là số tự nhiên