Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)
Để B là số nguyên
\(\Rightarrow\frac{3}{n-3}\in z\)
\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu n -3 = 3 => n= 6 (TM)
n- 3 = - 3 => n = 0 (TM)
n -3 = 1 => n = 4 (TM)
n -3 = -1 => n = 2 (TM)
KL: \(n\in\left(6;0;4;2\right)\)
b) đề như z pải ko bn!
ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)
Để C là số nguyên
\(\Rightarrow\frac{16}{n+7}\in z\)
\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)
rùi bn thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)
Để : \(\frac{n+7}{3n-1}\in N\)
Thì n + 7 chia hết cho 3n - 1
<=> 3n + 21 chia hết cho 3n - 1
<=> 3n - 1 + 22 chia hết cho 3n - 1
=> 22 chia hết cho 3n - 1
=> 3n - 1 thuộc Ư(22) = {22;11;2;1}
Ta có bảng :
3n - 1 | 22 | 11 | 2 | 1 |
3n | 23 | 12 | 3 | 2 |
n | 4 | 1 |
\(A=\frac{3n+2}{6n+3}\) là phân số tối giản <=>3n+2 và 6n+3 là 2 số ntố cùng nhau
Gọi (3n+2;6n+3)=d
=>3n+2 chia hết cho d <=>2(3n+2)chia hết cho d
<=>6n+4 chia hết cho d
mà 6n+3 cũng chia hết cho d nên
(6n+3)(6n+4) chia hết cho d
mà đây là 2 số liên tiếp
=>d=1
=>A là ps tối giản
nhớ tick mình nha ,cảm ơn
thôi còn thắc mắc gì nữa ko được ns như thế với bn mik nghe chưa.
\(A=\frac{6n-3}{3n+1}=2-\frac{5}{3n+1}\)
Để A nguyên thì \(3n+1\inƯ\left(5\right)\).
Lập bảng làm nốt.