Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n+5/n+3 thuộc z khi và chỉ khi 2n+5 chia hết cho n+3
Ta có:2n+5/n+3=2n+6-1/n+3=2(
n+3)-1/n+3=2 + -1/n+3
=>n+3 thuộc ước của -1
=>n+3=-1,1
=>n=-4,-2
Ta có:
\(\dfrac{2n+5}{n+3}=\dfrac{2\left(n+3\right)-1}{n+3}=\dfrac{2-1}{n+3}\)
Để \(\dfrac{2n+5}{n+3}\inℤ\) thì 1 chia hết cho n + 3
\(\Rightarrow\) n + 3 thuộc Ư(1) = {1 ; -1}
Với \(n+3=1\Leftrightarrow n=-2\)
\(n+3=-1\Leftrightarrow n=-4\)
Vậy \(n=-2\) hoặc \(n=-4\)
1. 3/n-5 thuộc N<=> n-5 lớn hơn 0<=>n lớn hơn 5
2. 3/n-5 thuộc Z<=> n-5 khác 0<=> n khác 5
3. 9/2n-3 thuộc Z<=> 2n-3 khác 0<=> 2n khác 3<=> n thuộc Z
nhưng mà ý b cũng là câu đó vậy cũng ko tìm dc mà tích đúng cho mình đi
Ta có:
A = \(\frac{2n-1}{2n+3}=\frac{\left(2n+3\right)-4}{2n+3}=1-\frac{4}{2n+3}\)
Để A \(\in\)Z <=> 4 \(⋮\)2n+3 <=> 2n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Do 2n + 3 là số lẻ => 2n + 3 \(\in\){1; -1}
=> 2n \(\in\){-2; -4}
=> n \(\in\){-1; -2}
\(\frac{n+3}{2n-2}=\frac{n+2+1}{2\left(n+1\right)}=n+1+\frac{2}{2\left(n+1\right)}\)
Đk : \(2\left(n+1\right)\ne0=>x\ne-1\)
Để giá trị trên thuộc z thì :
\(2\left(n+1\right)\inƯ\left(2\right)\)
\(=>2\left(n+1\right)=\left\{-1;1;-2;2\right\}\)
TH1 : \(2\left(n+1\right)=-1=>n=-1,5\)
TH2 : \(2\left(n+1\right)=1=>n=-0,5\)
TH3 : \(2\left(n+1\right)=2=>n=0\)
TH4 : \(2\left(n+1\right)=-2=>n=-2\)
Ủng hô nha
\(\Leftrightarrow2n-3+8⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1\right\}\)
hay \(n\in\left\{2;1\right\}\)
2n -1 chia hết cho n+ 1
=> 2n+2-2-1 chia hết cho n+1
=> 2.(n+1)-3 chia hết cho n+1
=> 3 chia hết cho n+1
=> n+1={3;1;-1;-3}
=> n={2;0;-2;-4}
Vậy n={2;0;-2;-4} thì 2n -1 chia hết cho n+ 1