Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+4 thuộc BC(5:n+1) nên 3n+4 chia hết cho n+1, 5
3n+4 chia hết cho n+1
3n+4=(3n+3)+1
mà 3n+3=3(n+1) chia hết cho n+1 nên 1 chia hết cho n+1 nên n=0 để 3n+4 chia hết cho n+1
nếu n=0 ta có
3n+4=3.0+4=0+4=4 không chia hết cho 5
nên n thuộc rỗng để 3n+4 thuộc BC(n+1,5)
Gọi d là ƯC(n+1,3n+4).(d thuộc N*).Ta có:
(n+1) chia hết cho d
(3n+4) chia hết cho d
=> 3.(n+1) chia hết cho d
(3n+4) chia hết cho d
=> (3n+3) chia hết cho d
(3n+4) chia hết cho d
=>[(3n+4) - (3n+3)] chia hết cho d
=> 1 chia hết cho d=> d=1
Vây ƯC(n+1; 3n+4)=1
làm ơn tích mk với
ta gọi ƯC là k
3n+1 chia hêt cho k
2n +1 chia hết cho k
3n+1-2n-1 chia hết cho k
n chia hết cho k
nên ƯC là n
- Goi UC[ 2n+1;3n+1] la d
=> 2n+1 chia het cho d => 3.[2n+1] chia het cho d => 6n+3 chia het cho d
=> 3n+1 chia het cho d => 2.[3n+1] chia het cho d => 6n +2 chia het cho d
Khi do ta co: 6n+3-6n-2 chia het cho d
=> 1 chia het cho d
=> d thuoc U[1] ={ -1;1}
=> Do d thuoc N
=> d=1
Ta có: 3n+4=3n-3+7=3(n-1)+7
Nhận thấy: 3(n-1) chia hết cho n-1 với mọi n
=> để 3n+4 chia hết cho n-1 thì 7 phải chia hết cho n-1 => n-1=(-7,-1,1,7)
Do n thuộc N => Chọn được n=(0,2,8)
Mà 3n+4 chia hết cho 5. Thay các giá trị n=0,2,8 và ta chỉ có với n=2 thì 3n+4 mới chia hết cho 5
=> Đáp số: n=2
3n + 4 thuoc BC(5.n-1) thi ta co
3n-1+4=5
3n-1=5-4
3n-1=1
3n=1+1
3n=1
Nen n =2
Vay 3n+4=32+4
va BC(5,n-1)=BC(5,2-1)
suy ra n=2