Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh
1. \(2^{30}\)và \(3^{20}\)
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(3^{20}=\left(3^2\right)^{10}=9^{10}\)
Vì \(8^{10}< 9^{10}\)
Nên \(2^{30}< 3^{20}\)
2. \(10^{20}\)và \(90^{10}\)
\(10^{20}=\left(10^2\right)^{10}=100^{10}\)
\(90^{10}\)
Vì \(100^{10}>90^{10}\)
Nên \(10^{20}>90^{10}\)
a) Ta có: \(2\le x\le100\)
Mà x chia hết cho 2 => \(x\in\left\{2;4;6;...;98;100\right\}\)
Số phần tử x là: \(\frac{\left(100-2\right)}{2}+1=50\)
b) Ta có: \(x+1=0\)
\(\Rightarrow x=-1\) , x = -1 không là số tự nhiên
=> Tập hợp rỗng
c) Theo nguyên lý Dirichlet cứ 3 số liên tiếp luôn tồn tại 1 số chia hết cho 3
Mà có vô số STN => Có vô số các số tự nhiên chia hết cho 3
=> Tập hợp vô số nghiệm
\(3125:25< 5^{2n}:125\le625:5^3\)
\(5^5:5^2< 5^{2n}:5^3\le5^4:5^3\)
\(5^3< 5^{2n}:5^3\le5\)
Mà em ơi, em đã hok lũy thừa của một lũy thừa chưa, nói đến đây sợ ko hiểu