Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử khi biểu diễn số tự nhiên n dưới dạng số thập phân,ta được:
\(n=a_m\cdot10^m+a_{m-1}\cdot10^{m-1}+....+a_1\cdot10+a_0\)với \(a_i\)là các chữ số,\(i=0,1,2,3,....,m\)và \(m\inℕ\)
\(\Rightarrow n\ge a_m+a_{m-1}+....+a_0\)
\(\Rightarrow n\ge S\left(n\right)\)
\(\Rightarrow n\ge n^2-2013n+6n\)
\(\Rightarrow n^2+6\le2014n\)
\(\Rightarrow n+\frac{6}{n}\le2014\)
\(\Rightarrow n< 2014\left(1\right)\)
Mà \(S\left(n\right)\ge0\)
\(\Rightarrow n^2-2013n+6\ge0\)
\(\Rightarrow n^2+6\ge2013n\)
\(\Rightarrow n+\frac{6}{n}\ge2013\)
\(\Rightarrow n\ge2013\left(2\right)\)
Từ (1) và (2) suy ra n=2013
Thay vào bài toán,ta được:
\(S_{2013}=2013^2-2013\cdot2013+6\left(TM\right)\)
Vậy số tự nhiên n cần tìm là 2013
gọi a là số chữ số của n.
dễ thấy S(n)>0 => n>2012 => a ≥ 4
với n=2013 thấy thỏa mãn.
với n>2013 ta có: S(n)=n(n-2014)+n+6 ≥ n+6 > n > $10^a$10a 10^a> 9a (với a ≥ 4)
(1) Tìm x thuộc N biết 18 chia hết cho x khi x-2
Để 18 chia hết cho x khi x-2
=> 18 chia hết cho x-2
=> x-2 thuộc Ư(18) = {1;2;3;6;9;18}
Ta có bảng:
x-2 | 1 | 2 | 3 | 6 | 9 | 18 |
x | 3 | 4 | 5 | 8 | 11 | 20 |
Vậy x thuộc {3;4;5;8;11;20}
(2) Tìm x thuộc N biết x-1 chia hết cho 13
Để x-1 chia hết cho 13 => x-1 thuộc B(13) = {0;13;26;49;...}
=> x thuộc {1;14;27;30;...}
(3) Tìm x thuộc N biết x+10 chia hết cho x-2
Để x+10 chia hết cho x-2
=> (x-2)+12 chia hết cho x-2
Mà x-2 chia hết cho x-2
=> x-2 thuộc Ư(12) = {1;2;3;4;6;12}
Ta có bảng:
x-2 | 1 | 2 | 3 | 4 | 6 | 12 |
x | 3 | 4 | 5 | 6 | 8 | 14 |
Vậy x thuộc {3;4;5;6;8;14}
a ) n + 2 chia hết cho n - 1
=> ( n-1 ) + 3 chia hết cho n - 1
=> 3 chia hết cho n -1
=> n - 1 thược Ư(3 ) = 1 ;3
=> n thuộc 2 ; 4
Vậy ...............................
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
1. Vì 18 chia hết cho n => n thuộc Ư(18)={1,2,3,6,9,18)
=> Tổng các Ư(18) = 1 + 2 +3 + 6 + 9 + 18 = 33
2.a) 12 chia hết cho n+3 => n + 3 thuộc Ư(12) = {1;2;3;4;6;12}
Với n + 3 = 1 => n = 1 - 3 = -2 (loại vì không thuộc N)
Với n + 3 = 2 => n = 2 - 3 = -1 (loại vì không thuộc N)
Với n + 3 = 3 => n = 3 - 3 = 0
Với n + 3 = 4 => n = 4 - 3 = 1
Với n + 3 = 6 => n = 6 - 3 = 3
Với n + 3 =12 => n = 12 - 3 = 9
Vậy n thuộc {0;1;3;9}
c) Nếu n là số chẵn thì n + 13 là số lẻ, n + 2 là số chắn và ngược lại
Vì SC không chia hết cho SL (và ngược lại) => n + 13 không chia hết cho n + 2 (ngược lại nốt)
Vậy không tồn tại giá trị nào của x (chắc thế)
Bài 1 :
\(18⋮n\Rightarrow n\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
bài 2 :
\(a,12⋮n+3\)
\(\Rightarrow n+3\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
\(\Rightarrow n=\left\{-2;-1;0;1;3;9\right\}\)mà \(n\in N\)
\(\Rightarrow n=\left\{0;1;3;9\right\}\)
b,c tương tự như vậy nha
n = 2 , 4 , 6, 8
bấm đúng nha