K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

Giả sử khi biểu diễn số tự nhiên n dưới dạng số thập phân,ta được:

\(n=a_m\cdot10^m+a_{m-1}\cdot10^{m-1}+....+a_1\cdot10+a_0\)với \(a_i\)là các chữ số,\(i=0,1,2,3,....,m\)và \(m\inℕ\)

\(\Rightarrow n\ge a_m+a_{m-1}+....+a_0\)

\(\Rightarrow n\ge S\left(n\right)\)

\(\Rightarrow n\ge n^2-2013n+6n\)

\(\Rightarrow n^2+6\le2014n\)

\(\Rightarrow n+\frac{6}{n}\le2014\)

\(\Rightarrow n< 2014\left(1\right)\)

Mà \(S\left(n\right)\ge0\)

\(\Rightarrow n^2-2013n+6\ge0\)

\(\Rightarrow n^2+6\ge2013n\)

\(\Rightarrow n+\frac{6}{n}\ge2013\)

\(\Rightarrow n\ge2013\left(2\right)\)

Từ (1) và (2) suy ra n=2013

Thay vào bài toán,ta được:

\(S_{2013}=2013^2-2013\cdot2013+6\left(TM\right)\)

Vậy số tự nhiên n cần tìm là 2013

9 tháng 4 2015

gọi a là số chữ số của n.

dễ thấy S(n)>0 => n>2012 => a ≥ 4

với n=2013 thấy thỏa mãn.

với n>2013 ta có: S(n)=n(n-2014)+n+6 ≥ n+6 > n > $10^a$10a 10^a> 9a (với a ≥ 4)

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

23 tháng 11 2019

(1) Tìm x thuộc N biết 18 chia hết cho x khi x-2

                    Để 18 chia hết cho x khi x-2

                           => 18 chia hết cho x-2

                           => x-2 thuộc Ư(18) = {1;2;3;6;9;18}

Ta có bảng:

x-21236918
x34581120

Vậy x thuộc {3;4;5;8;11;20}

(2) Tìm x thuộc N biết x-1 chia hết cho 13

Để x-1 chia hết cho 13 => x-1 thuộc B(13) = {0;13;26;49;...}

                                       => x thuộc {1;14;27;30;...}

(3) Tìm x thuộc N biết x+10 chia hết cho x-2

Để x+10 chia hết cho x-2

=> (x-2)+12 chia hết cho x-2 

Mà x-2 chia hết cho x-2

=> x-2 thuộc Ư(12) = {1;2;3;4;6;12}

Ta có bảng:

x-21234612
x3456814

Vậy x thuộc {3;4;5;6;8;14}

28 tháng 12 2016

a ) n + 2 chia hết cho n - 1 

      => ( n-1 ) + 3 chia hết cho n - 1 

      => 3 chia hết cho n -1 

      => n - 1 thược Ư(3 ) = 1 ;3

                            => n thuộc 2 ; 4 

Vậy ...............................

16 tháng 2 2017

cả 4 câu bạn ơi ko thì mình ko k

16 tháng 2 2019

4n+3 chia hết cho 3n-2 

<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2

<=>17 chia hết cho 3n-2

<=>3n-2 E {-1;1;17;-17}

<=> 3n E {1;3;19;-15} loại các TH n ko nguyên

=>n  E {1;-5}. Vậy.....

16 tháng 2 2019

2n+3 chia hết cho n-1

<=> 2n+3-2(n-1) chia hết cho n-1

<=>5 chia hết cho n-1

<=> n-1 E {-1;1;5;-5}

<=> n E {0;2;6;-4}

bài nào chứ mấy bài này dài ngoằng =((

20 tháng 10 2017

1. Vì 18 chia hết cho n => n thuộc Ư(18)={1,2,3,6,9,18)

=> Tổng các Ư(18) = 1 + 2 +3 + 6 + 9 + 18 = 33

2.a) 12 chia hết cho n+3 => n + 3 thuộc Ư(12) = {1;2;3;4;6;12}

Với n + 3 = 1 => n = 1 - 3 = -2 (loại vì không thuộc N)

Với n + 3 = 2 => n = 2 - 3 = -1 (loại vì không thuộc N)

Với n + 3 = 3 => n = 3 - 3 = 0

Với n + 3 = 4 => n = 4 - 3 = 1

Với n + 3 = 6 => n = 6 - 3 = 3

Với n + 3 =12 => n = 12 - 3 = 9

Vậy n thuộc {0;1;3;9}

c) Nếu n là số chẵn thì n + 13 là số lẻ, n + 2 là số chắn và ngược lại

Vì SC không chia hết cho SL (và ngược lại) => n + 13 không chia hết cho n + 2 (ngược lại nốt)

Vậy không tồn tại giá trị nào của x (chắc thế)

20 tháng 10 2017


Bài 1 : 
\(18⋮n\Rightarrow n\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
bài 2 :

\(a,12⋮n+3\)
\(\Rightarrow n+3\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
\(\Rightarrow n=\left\{-2;-1;0;1;3;9\right\}\)mà \(n\in N\)
\(\Rightarrow n=\left\{0;1;3;9\right\}\)
b,c tương tự như vậy nha