Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>6n+2 chia hết cho 2n+3
=>6n+9-7 chia hết cho 2n+3
=>2n+3 thuộc Ư(-7)
mà n là số tự nhiên
nên 2n+3=7
=>2n=4
=>n=2
Goi ƯCLN(2n+1;3n+1) là d
=> \(3\left(2n+1\right)-2\left(3n+1\right)\) chia hết cho d
=> \(6n+3-6n-2\) chia hết cho d
=> 1 chia d
=> d\(\inƯ_{\left(1\right)}\)
=> d=1 ; d= - 1
Mà d lớn nhất
=> d=1
Đặt UCLN (2n+1 và 3n+1)=d
\(\Rightarrow\) 2n+1 chia hết cho d và 3n+1 chia hết cho d
\(\Rightarrow\) 6n+3 chia hết cho d và 6n+2 chia hết cho d
\(\Rightarrow\) 1 chia hết cho d
\(\Rightarrow\) d=1 \(\Rightarrow\)ƯCLN (2n+1 và 3n+1)=1
b) \(\Rightarrow\left(n+2\right)\inƯ\left(19\right)=\left\{-19;-1;1;19\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{17\right\}\)
a) Do \(n\in N\)
\(\Rightarrow n\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
c) \(\Rightarrow\left(n+1\right)+8⋮\left(n+1\right)\)
Do \(n\in N\Rightarrow n\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)
d) \(\Rightarrow3\left(n+1\right)+18⋮\left(n+1\right)\)
Do \(n\in N\Rightarrow\left(n+1\right)\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow n\in\left\{0;1;2;5;8;17\right\}\)
e) \(\Rightarrow\left(n-2\right)+10⋮\left(n-2\right)\)
Do \(n\in N\Rightarrow\left(n-2\right)\inƯ\left(10\right)=\left\{-2;-1;1;2;5;10\right\}\)
\(\Rightarrow n\in\left\{0;1;3;4;7;12\right\}\)
f) \(\Rightarrow n\left(n+4\right)+11⋮\left(n+4\right)\)
Do \(n\in N\Rightarrow\left(n+4\right)\inƯ\left(11\right)=\left\{11\right\}\)
\(\Rightarrow n\in\left\{7\right\}\)
a) Ta có:\(n-6⋮n-1\)
\(\Leftrightarrow n-1-5⋮n-1\)
mà \(n-1⋮n-1\)
nên \(-5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(-5\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
Vậy: \(n\in\left\{2;0;6;-4\right\}\)
b) Ta có: \(3n+2⋮n-1\)
\(\Leftrightarrow3n-3+5⋮n-1\)
mà \(3n-3⋮n-1\)
nên \(5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(5\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
Vậy: \(n\in\left\{2;0;6;-4\right\}\)
c) Ta có: \(n^2+5⋮n+1\)
\(\Leftrightarrow n^2+2n+1-2n+4⋮n+1\)
\(\Leftrightarrow\left(n+1\right)^2-2n-2+6⋮n+1\)
mà \(\left(n+1\right)^2⋮n+1\)
và \(-2n-2⋮n+1\)
nên \(6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(6\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Lời giải:
$n^2+12n=n(n+12)$ nên để $n^2+12n$ là số nguyên tố thì 1 trong 2 thừa số $n, n+12$ bằng $1$, số còn lại là số nguyên tố.
Mà $n< n+12$ nên $n=1$
Khi đó: $n^2+12n=1^2+12.1=13$ là số nguyên tố (thỏa mãn)
=>n^2-n+4n-4+5 chia hết cho n-1
=>\(n-1\in\left\{1;-1;5;-5\right\}\)
mà n>=0
nên \(n\in\left\{2;0;6\right\}\)