K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2021

Đặt n + 24 = a2

n - 65 = b2

=> a- b= n + 24 - n + 65

=> (a - b)(a + b) = 1 . 89

Vì a - b < a + b

\(\Rightarrow\hept{\begin{cases}a-b=1\\a+b=89\end{cases}}\)  

\(\Rightarrow\hept{\begin{cases}a=45\\b=44\end{cases}}\)

=> n + 24 = 452

=> n = 2001

8 tháng 3 2021

Đặt \(n+24=a^2\)

       \(n-65=b^2\)

\(\Rightarrow a^2-b^2=\left(n+24\right)-\left(n-65\right)\)

\(\Rightarrow a^2-b^2=n+24-n+65\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)=1.89\)

Vì \(a-b< a+b\)

\(\Rightarrow\hept{\begin{cases}a-b=1\\a+b=89\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=45\\b=44\end{cases}}\)

\(\Rightarrow n+24=45^2\)

\(\Rightarrow n=2001\)

6 tháng 4 2020

minh bo tay

6 tháng 4 2020

bó tay rùi

12 tháng 11 2018

Ta có:

\(\(19^{2n}\)\) tận cùng là 1

\(\(5^n\)\) tận cùng là 5

2002 tận cùng là 2

\(\(\Rightarrow19^{2n}+5^n+2002\)\) tận cùng là 8

Vậy nó không thể là số chính phương được.

16 tháng 9 2018

Ta có:

\(E\: =x^2+\frac{2x}{y}+\frac{1}{y^2}+y^2+\frac{2y}{x}+\frac{1}{x^2}=\left(x^2+y^2\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(\Rightarrow E\ge4+4+\frac{1}{x^2}+\frac{1}{y^2}=8+\frac{x^2+y^2}{x^2y^2}\)

Do:   \(4=x^2+y^2\ge2xy\Rightarrow xy\le2\Rightarrow x^2y^2\le4\Rightarrow\frac{4}{x^2y^2}\ge1\)

\(\Rightarrow E\ge8+1=9\)

Dấu bằng xảy ra khi x=y=\(\sqrt{2}\)

18 tháng 6 2016

a=b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức 
Ta có các tính chất cua đồng dư thức và các tính chất sau: 
Cho x là số tự nhiên 
Nếu x lẻ thì => x^2 =1 (mod 8) 
x^2 =-1(mod 5) hoặc x^2=0(mod 5) 
Nếu x chẵn thì x^2=-1(mod 5) hoặc x^2 =1(mod 5) hoặc x^2=0(mod 5) 
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt 
3a+1=m^2 
2a+1 =n^2 
=> m^2 -n^2 =a (1) 
m^2 + n^2 =5a +2 (2) 
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3) 
Từ (2) ta có (m^2 + n^2 )=2(mod 5) 
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5) 
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5 
từ pt ban đầu => n lẻ =>n^2=1(mod 8) 
=> 3n^2=3(mod 8) 
=> 3n^2 -1 = 2(mod 8) 
=> (3n^2 -1)/2 =1(mod 8) 
Từ (3) => m^2 = (3n^2 -1)/2 
do đó m^2 = 1(mod 8) 
ma n^2=1(mod 8) 
=> m^2 - n^2 =0 (mod 8) 
=> a chia hết cho 8 
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40