Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được
1) Đặt: ( n + 9 ; n - 6 ) = d với d là số tự nhiên
=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow\left(n+9\right)-\left(n-6\right)⋮d\Rightarrow15⋮d\)
=> d \(\in\)Ư ( 15 ) = { 1; 3; 5; 15 }
=> d có thể rút gọn cho số 3; 5; 15
2) Đặt: ( 18n + 3 ; 23n + 7 ) = d
=> \(\hept{\begin{cases}18n+3⋮d\\23n+7⋮d\end{cases}}\Rightarrow23\left(18n+3\right)-18\left(23n+7\right)⋮d\)
=> \(57⋮d\)
=> \(d\inƯ\left(57\right)=\left\{1;3;19;57\right\}\)
=> \(\frac{18n+3}{\text{23n+7}}\) rút gọn được khi d = 3; d = 19 ; d = 57
Vì rút gọn được cho 57 thì sẽ rút gọn được cho 3 và cho 19
Nên mình chỉ cần xác định n với d = 3 và d =19
+) Với d = 3
\(\hept{\begin{cases}18n+3⋮3\\23n+7⋮3\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮3\)
=> \(n+11⋮3\)
=> \(n-1⋮3\)
=>Tồn tại số tự nhiên k sao cho: \(n=3k+1\)khi đo phân số sẽ rút gọn được cho 3
+) Với d = 19
\(\hept{\begin{cases}18n+3⋮19\\23n+7⋮19\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮19\)
=> \(n+11⋮19\Rightarrow n-8⋮19\)
=> Tồn tại số tự nhiên k sao cho n = 19k + 8 khi đó phân số sẽ rút gọn được cho 19
Vậy n = 3k + 1 hoặc n = 19k + 8 thì phân số sẽ rút gọn được.
Gọi d là ước chung nguyên tố của 2n + 1 và n + 2
Ta có : 2n + 1 và n + 2 chia hết cho d
=> 2n + 1 và 2n + 4 chia hết cho d
=>(2n + 4) - (2n + 1) chia hết cho d
=> 3 chia hết cho d => d = 3
Để p/s tối giản thì d ko bằng 3
=> 2n + 1 ko chia hết cho 3
=> 2n + 1 - 3 ko chia hết cho 3
=> 2n - 2 ko chia hết cho 3
=> 2.(n - 1) ko chia hết cho 3
=> n - 1 ko chia hết cho 3 (vì 2 và 3 nguyên tố cùng nhau)
=> n ko bằng 3k + 1(k thuộc Z)
Vậy với n ko bằng 3k + 1 thì p/s tối giản
Gọi d là ước chung nguyên tố của 2n + 1 và n + 2
Ta có : 2n + 1 và n + 2 chia hết cho d
=> 2n + 1 và 2n + 4 chia hết cho d
=>(2n + 4) - (2n + 1) chia hết cho d
=> 3 chia hết cho d => d = 3
Để p/s tối giản thì d ko bằng 3
=> 2n + 1 ko chia hết cho 3
=> 2n + 1 - 3 ko chia hết cho 3
=> 2n - 2 ko chia hết cho 3
=> 2.(n - 1) ko chia hết cho 3
=> n - 1 ko chia hết cho 3 (vì 2 và 3 nguyên tố cùng nhau)
=> n ko bằng 3k + 1(k thuộc Z)
Vậy với n ko bằng 3k + 1 thì p/s tối giản
Ta có: (2n+1) chia hết cho (n+2)
=>2(n+2)-3 chia hết cho n+2
=>-3 chia hết cho n+2
=> n+2 thuộc Ư(-3)
ta có bảng sau:
n+2 | 3 | -3 | 1 | -1 |
n | 1 | -5 | -1 | -3 |
vậy n thuộc tập hợp {1; -3; -1; -5} thì n rút gọn được
mk bt làm ƯCLN của 2n+1 và n+2\(\in\)(1,3 rồi các bạn chỉ cần trình bày đoạn sau thui
Gọi d = ƯC (21n + 3; 6n + 4) (d là số nguyên tố vì nếu tử và mẫu có chung ước thì sẽ có chung các uơcs nguyên tố )
=> 21n + 3 chia hết cho d; 6n + 4 chia hết cho d
=> 7. (6n +4) - 2.(21n +3) chia hết cho d
Hay 22 chia hết cho d; d nguyên tố nên d = 2 hoặc 11
+) d = 2 => 21n + 3 chia hết cho 2 và 6n + 4 chia hết cho 2 (luôn đúng)
Chỉ cần 21n +3 chia hết cho 2 => n lẻ
+) d = 11 : để 21n + 3 chia hết cho 11 => 22n - - n + 3 chia hết cho 11
=> n - 3 chia hết cho 11 => n = 3 + 11k
=> 6n + 4 = 6(3 + 11k) + 4 = 66k + 22 chia hết cho 11
Vậy n = 3 + 11k hoặc n lẻ thì A rút gọn được
Ta có :
(21n+3)/(6n+4)
= 4 - (3n+13)/(6n+4)
= 4 - 1/2.(6n+26)/(6n+4)
= 4 - 1/2.(1+22/(6n+4))
Để là số nguyên thì 6n+4 phải là ước của 22 và thương 22/(6n+4) phải là số lẻ
=> 6n+4=22 (Vì n là số tự nhiên nên chỉ có giá trị này thỏa mãn)
=> 6n = 18
=> n = 3