Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A> / x-1+5-x/
A>hoặc =/ 4/
Min A= 4 đạt đc khi x-1 và 5-x cùng dấu
th1: Nếu \(\hept{\begin{cases}x-1>0\\5-x>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>=2\\x< =5\end{cases}}\)( lớn ( bé) hơn hoặc =)
\(\Rightarrow x\in1,2,3,4,5\)
th2: Nếu \(\hept{\begin{cases}x-1< 0\\5-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>5\end{cases}}}\)
\(\Rightarrow x\in\)rỗng
Vậy...........
B= /x+1/+ /x-8/
Ta có: x-8 và 8-x là 2 số đối nhau \(\Rightarrow\)/x-8/=/8-x/
\(\Rightarrow\)B= /x+1/+/8-x/
B > /x+1+8-x/
B >=9
Min 9 đạt đc khi x+1 và 8-x cùng dấu.
th1: Nếu \(\hept{\begin{cases}x+1>0\\8-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>=-1\\x< =8\end{cases}}}\)
\(\Rightarrow x\in-1,0,1,2,3,4,5,6,7,8\)
th2: Nếu \(\hept{\begin{cases}x+1< 0\\8-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< =-1\\x>=-8\end{cases}}}\)
\(\Rightarrow x\in\)rỗng
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
\(3n+2⋮3n-5\)
\(3n-5+7⋮3n-5\)
\(7⋮3n-5\)hay \(3n-5\inƯ\left(7\right)=\left\{1;7\right\}\)
3n - 5 | 1 | 7 |
3n | 6 | 12 |
n | 2 tm | 4 tm |
Vì 3n+6 chia hết cho 3
mà 3n+6 cũng chia hết cho 1 và chính nó
=>3n+6 là hợp số
Vậy ko có n thỏa mãn đề bài
k mik nha
a)Ta có:\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)
=> Để \(1+\frac{5}{n-2}\) là số nguyên âm
=>\(\frac{5}{n-2}\) là số âm và \(\frac{5}{n-2}>-1\)
\(\Rightarrow n-2=-5\)
\(\Rightarrow n=-5-2\)
\(\Rightarrow n=-3\)
Đặt \(N=n^2+3n+2=\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow N\) có ít nhất 2 ước tự nhiên là \(n+1\) và \(n+2\)
\(\Rightarrow N\) là số nguyên tố khi \(\left\{{}\begin{matrix}n+1=1\\n+2\text{ là số nguyên tố}\end{matrix}\right.\)
\(\Rightarrow n=0\)
n^2+3n là SNT tương đương với n(n+3)
Ta có: n+3-n=3 là số lẻ nên n và n+3 khác t/cl do đó luôn tồn tại 1 SC, n(n+3) chia hét cho 2
Để n(n+3) Là SNT thì nó phải = 2 . xét n= 0 thì ko thỏa mãn đề bài . Mà n>= 1=> n(n+3)>=4 và>2
=> n thuộc tập rỗng
b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố
n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3
Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.
Vậy với n = 0 thì 3n + 6 là số nguyên tố.