K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Ta có:

\(\frac{3n^2+1}{n+2}=\frac{3n\left(n+2\right)-5}{n+2}=\frac{3n\left(n+2\right)}{n+2}-\frac{5}{n+2}=3n-\frac{5}{n+2}\)

Để phân số \(\frac{3n^2+1}{n+2}\in Z\)\(\Rightarrow3n-\frac{5}{n+2}\in Z\)

Mà \(3n\in Z\Rightarrow\left(n+2\right)\inƯ\left(5\right)\)

*\(\orbr{\begin{cases}n+2=1\\n+2=-1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}n=1-2\\n=-1-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=-1\\n=-3\end{cases}}\)

*\(\orbr{\begin{cases}n+2=5\\n+2=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=5-2\\n=-5-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=3\\n=-7\end{cases}}\)

                                    Vậy \(n\in\left(-7;-3;-1;3\right)\)

                         

6 tháng 4 2017

Để \(\frac{n+3}{2n-2}\in Z\Rightarrow n+3⋮2n-2\)

\(\Rightarrow2.\left(n+3\right)⋮2n-2\)

\(\Rightarrow2n+6⋮2n-2\)

\(\Rightarrow\left(2n-2\right)+8⋮2n-2\)

\(\Rightarrow8⋮2n-2\)

\(\Rightarrow2n-2\inƯ\left(8\right)=\left\{-8;-4;-2;-1;+1;+2;+4;+8\right\}\)

vì \(2n-2⋮2\)

\(\Rightarrow2n-2\in\left\{-8;-4;-2;+2;+4;+8\right\}\)

\(\Rightarrow2n\in\left\{-6;-2;0;+4;+6;+10\right\}\)

\(\Rightarrow n\in\left\{-3;-1;0;+2;+3;+5\right\}\)

Mà n là số tự nhiên \(\Rightarrow n\in\left\{+2;+3;+5\right\}\)

vậy \(\Rightarrow n\in\left\{+2;+3;+5\right\}\)thì \(\frac{n+3}{2n-2}\in Z\)

16 tháng 3 2019

Là số nguyên, ko phải là số tự nhiên nha bạn

19 tháng 8 2016

Ta có : \(\frac{3x+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)

Để : \(\frac{3n+2}{n-1}\) nguyên thì \(\frac{5}{n-1}\) nguyên

Để : \(\frac{5}{n-1}\) thì \(n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)

10 tháng 8 2016

Để \(\frac{4n+3}{3n+1}\) thuộc Z thì 4n + 3 chia hết cho 3n + 1

\(\Rightarrow3\left(4n+3\right)⋮3n+1\)

\(\Rightarrow12n+9⋮3n+1\)

\(\Rightarrow\left(12n+4\right)+5⋮3n+1\)

\(\Rightarrow4\left(3n+1\right)+5⋮3n+1\)

\(\Rightarrow5⋮3n+1\)

\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)

+) 3n + 1 = 1\(\Rightarrow n=0\) ( chọn )

+) \(3n+1=-1\Rightarrow n=\frac{-2}{3}\) ( loại )

+) \(3n+1=5\Rightarrow n=\frac{4}{3}\) ( loại )

+) \(3n+1=-5\Rightarrow n=-2\)

Vậy n = 0 hoặc n = -2

 

4 tháng 12 2017

Ta có:A=\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)

Để A nguyên thì \(\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)

\(\Rightarrow n\in\left\{-4,0,2,6\right\}\)

Vậy............

4 tháng 12 2017

Ta có : A= (3n+2)/(n-1)

= [3.( n-1)+5]/(n-1)

=3+[5/(n-1)]

Để A nguyên thì 5 phải chia hết cho n-1

=> n-1 thuộc ước của 5

Ta có bảng sau

x-11-15-5
x206-4

Vậy x\(\in\){ -4 ; 0 ; 2 ; 6 }

a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1

=>3(n-1)+7 chia hết cho n-1

=> n-1 thuộc Ư(7)={1;7;-1;-7}

Phần cuối bn tự làm nha

Còn câu b làm tương tự

8 tháng 3 2020

a) Từ đề bài, ta có:

\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)

\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)

\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)

b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)

\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)

\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)

6 tháng 7 2016

\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)

Để p/s A có giá trị nguyên thì 3 chia hết cho n+4

=>n+4 E Ư(3)={-3;-1;1;3}

=>n E {-7;-5;-3;-1}

Vậy........

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)

Để B là số nguyên thì 8 chia hết cho 2n-1

Tới đây tương tự câu trên nhé

6 tháng 7 2016

Để A nguyên thì 3n - 9 chia hết n - 4

<=>  (3n - 12) + 3 chia hết n - 4

=>    3.(n - 4) + 3 chia hết n - 4

=>       3 chia hết n - 4

=>        n - 4 thuộc Ư(3)

=>       Ư(3) = {-1;1;-3;3}
Ta có: 

n - 4-11-33
n3517
6 tháng 7 2016

a, Ta có: \(\frac{3n+9}{n-4}\in Z\Leftrightarrow\frac{3n-12+21}{n-4}\in Z\Leftrightarrow\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}\in Z\Leftrightarrow3+\frac{21}{n-4}\in Z\)

\(\Leftrightarrow\frac{21}{n-4}\in Z\Leftrightarrow n-4\inƯ21\Leftrightarrow n-4\in\left\{\pm1;\pm3;\pm7;\pm21;\right\}\)

\(\Leftrightarrow n\in\left\{-17;-3;1;3;4;7;11;25\right\}\)

b, Ta có: \(\frac{6n+5}{2n-1}\in Z\Leftrightarrow\frac{6n-3+8}{2n-1}\in Z\Leftrightarrow\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}\in Z\Leftrightarrow3+\frac{8}{2n-1}\in Z\Leftrightarrow\frac{8}{2n-1}\in Z\)

\(\Leftrightarrow2n-1\inƯ8\Leftrightarrow2n-1\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Leftrightarrow n\in\left\{1;0\right\}\)  Vì \(n\in Z\)

13 tháng 11 2016

Đặt tính ra ta có: \(\left(3n+9\right):\left(n-4\right)=3\) dư 21

\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{21}{n-4}\)

\(\Rightarrow n-4\in U\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bảng sau:

n-41-13-37-721-21
n537111-325-17

Vậy......

b) Ta tính được: \(\left(6n+5\right):\left(2n-1\right)=3\) dư 8

\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\in U\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng sau:

2n-11-12-24-48-8
n101.5 (loại)-0.5 (loại)2.5 (loại)-1.5 (loại)4.5 (loại)-3.5 (loại)

Vậy \(x\in\left\{0;1\right\}\)