Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 45: (SBT/12):
a. (5x4 - 3x3 + x2) : 3x2
= (5x4 : 3x2) + (-3x3 : 3x2) + (x2 : 3x2)
=\(\dfrac{5}{2}\)x2 - x + \(\dfrac{1}{3}\)
b. (5xy2 + 9xy - x2y2) : (-xy)
= [5xy2 : (-xy)] + [9xy : (-xy)] + [(-x2y2) : (-xy)]
= -5y - 9 + xy
c. (x3y3 : \(\dfrac{1}{3}\)x2y3 - x3y2) : \(\dfrac{1}{3}\)x2y2
= (x3y3 : \(\dfrac{1}{3}\)x2y2) + (-\(\dfrac{1}{2}\)x2y3 : \(\dfrac{1}{3}\)x2y2) + (-x3y2 : \(\dfrac{1}{3}\)x2y2)
= 3xy - \(\dfrac{3}{2}\)y - 3x
a: \(=\dfrac{5}{3}x^2-x+\dfrac{1}{3}\)
b: \(=-5y-9+xy\)
a, mình nghĩ đề là cm đẳng thức nhé
\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)
Vậy ta có đpcm
b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)
\(=-5y-9+xy=VP\)
Vậy ta có đpcm
c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)
Vậy ta có đpcm
a: \(5x^2y^4:10x^2y=\dfrac{1}{2}y^3\)
c: \(\left(-xy\right)^{10}:\left(-xy\right)^5=-x^5y^5\)
a: Để đây là phép chia hết thì 1-n>0
hay n<=1
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
b: Để đây là phép chia hết thì 2-n>=0
hay n<=2
mà n là số tự nhiên
nên \(n\in\left\{0;1;2\right\}\)
a. Vì đa thức \(\left(5x^3-7x^2+x\right)\) chia hết cho \(3x^n\)
nên hạng tử x chia hết cho \(3x^n\Rightarrow0\le n\le1\)\(\Rightarrow n\in\left\{0;1\right\}\)
b. Vì đa thức \(\left(13x^4y^3-5x^3y^3+6x^2y^2\right)\) chia hết cho \(5x^ny^n\)
Nên hạng tử \(6x^2y^2\) chia hết cho \(5x^ny^n\Rightarrow0\le n\le2\Rightarrow x\in\left\{0;1;2\right\}\)