Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)
Ý 1 tớ chịu còn 2 ý sau để tớ giúp
Gỉa sử : 12n+1 chia hết cho d ( d là ƯCLN)
30n+2 chia hết cho d
=> 5(12n+1) chia hết cho d
2(30n+2) chia hết cho d
=> 5(12n+1) - 2(30n+2) chia hết cho d
=>( 60n + 5) - (60n + 4)
=> 60n+5 - 60n-4 chia hết cho d
=> 1 chia hết cho d
=> d=1
=> 12n+1/30n+2 tối giản ( đpcm )
Gỉa sử 8n+193 chia hết cho d d nguyên tố
4n+3 chia hết cho d
=> (8n+193) - 2 ( 4n+3) chia hết cho d
=> (8n+193) - (8n+6) chia hết cho d
=> 8n+193 - 8n -6 chia hết cho d
=> 187 chia hết cho d
Do d nto =>d = 11;17
=> 8n+193 chia hết cho 11
4n+3 chia hết cho 11
=>4(8n+193) chia hết cho 11
3( 4n+3 ) chia hết cho 11
=> 32n+772 chia hết cho 11
12n+9 chia hết cho 11
=> 33n-n+11.70+2 chia hết cho 11
11n+n+11-2 chia hết cho 11
=>-n+2 chia hết cho 11
n-2 chia hết cho 11
=> n-2 chia hết cho 11
=> n-2 = 11k(k thuộc N*)
=> n= 11k+2 (1)
d=17 ta có
8n+193 chia hết cho 17
4n+3 chia hết cho 17
=>2(8n+193) chia hết cho 17
4(4n+3) chia hết cho 17
=. 16n+386 chia hết cho 17
16n+12 chia hết cho 17
=> 17n-n+17.22+12 chia hết cho 17
17n-n+12 chia hết cho 17
=> -n+12 chia hết cho 17
=> n-12 chia hết cho 17
=> n-12=17q (q thuộc N*)
=>n= 17q+12 (2)
Từ (1) và (2) => B rút gọn được khi n=11k+2 ; 17q+12
Do 150<n<170
=> n thuộc 156;165;167
Vậy n thuộc 156;165;167
để A là PS thì n-3 khác 0
=>n # 3
Để A có giá trị nguyên thì n+1 phải chia hết cho n-3
=>n-3 là Ư(n+1)
Ta có:n+1=(n-3)+4
=>n-3 là Ư(4)
TA có bảng....
Rồi đến đây bạn tự tính và kết luận là xong nhé
Ta có :
\(A=\frac{6n-1}{3n+2}\)
\(A=\frac{6n+4-5}{3n+2}\)
\(A=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Mà để \(2-\frac{5}{3n+2}\)có giá trị nhỏ nhất
\(\Rightarrow\frac{5}{3n+2}\)phải có giá trị lớn nhất
Mà để \(\frac{5}{3n+2}\)có giá trị lớn nhất thì \(3n+2\)phải là số nguyên âm nhỏ nhất và là ước của 5
\(\Rightarrow3n+2=-1\)để \(\frac{5}{3n+2}\) bằng -5
\(\Rightarrow3n=-3\)
\(\Rightarrow n=-1\)
Vậy n=-1 thì A có giá trị nhỏ nhất
a)\(A\inℤ\)
\(\Leftrightarrow6n-1⋮3n+2\)
\(\Leftrightarrow3n+2⋮3n+2\)
\(\Leftrightarrow6n+4⋮3n+2\)
\(\Leftrightarrow6n+4-\left(6n-1\right)⋮3n+2\)
\(\Leftrightarrow6n+4-6n+1⋮3n+2\)
\(\Leftrightarrow5⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng
b)Gọi d là ƯCLN 6n-1 và 3n+2
<=>6n-1\(⋮\)d 3n+2\(⋮\)d
<=>________ 6n+4\(⋮\)d
<=>6n+4-6n+1\(⋮\)d
<=>5\(⋮\)d
Lập bảng(như câu a)
=>\(n\in\left\{\pm1\right\}\)để A là ps tối giản
c)(chịu)