Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
huhu mọi người ơi tích cho mk đi mk bị trừ mất 20 điểm rồi
Giả sử 4n+34n+3 và 2n+32n+3 cùng chia hết cho số nguyên tố dd thì:
2(2n+3)−(4n+3)⋮d→3⋮d→d=32(2n+3)−(4n+3)⋮d→3⋮d→d=3
Để (2n+3,4n+3)=1(2n+3,4n+3)=1 thì d≠3d≠3. Ta có:
4n+34n+3 không chia hết cho 33 nếu 4n4n không chia hết cho 33 hay nn không chia hết cho 33.
Kết luận: Với nn không chia hết cho 33 thì 4n+34n+3 và 2n+32n+3 là hai số nguyên tố cùng nhau.
giả sử 4n+3 và 2n+3 cùng chia hết cho số nguyên tố a thì :
2(2n+3) - (4n+3) chia hết cho d => 3 chia hết cho d => d=3
Để UCLN(4n+3,2n+3)=1 thì d phải khác 3
=> 4n+3 không chia hết cho 3 nếu 4n không chia hết cho 3 hay n không chia hết cho 3
Kết luận : Với n không chia hết cho 3 thì 4n+3 và 2n+3 là nguyên tố cùng nhau
gọi d là ước chung lớn nhất của 2n + 3 và 4n + 1
ta có : 2n + 3 : hết cho d , 4n + 1 : hết cho d
=> 2( 2n + 3) : hết cho d , 4n + 1 : hết cho d
=> ( 4n + 6) - ( 4n + 1) : hết cho d
=> 5 : hết cho d
=> d \(\varepsilon\){ 5}
mà 4n + 1 ko : hết cho 5
=> 4n : hết cho 5
=> n : hết cho 5
=> n \(\varepsilon\)5k
gọi d là ước chung lớn nhất của 2n + 3 và 4n + 1
ta có : 2n + 3 : hết cho d , 4n + 1 : hết cho d
=> 2( 2n + 3) : hết cho d , 4n + 1 : hết cho d
=> ( 4n + 6) - ( 4n + 1) : hết cho d
=> 5 : hết cho d
=> d ε{ 5}
mà 4n + 1 ko : hết cho 5
=> 4n : hết cho 5
=> n : hết cho 5
=> n ε 5k
chúc bn hok tốt @+_@