K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

Để A nguyên => 3A nguyên

Khi đó \(3A=\frac{6n-9}{3n-1}=\frac{6n-2-7}{3n-1}=\frac{2\left(3n-1\right)-7}{3n-1}=2-\frac{7}{3n-1}\)

Vì \(2\inℤ\Rightarrow\frac{-6}{3n-1}\inℤ\Rightarrow-7⋮3n-1\Rightarrow3n-1\inƯ\left(-7\right)\)

=> \(3n-1\in\left\{1;7;-1;-7\right\}\)

=> \(3n\in\left\{2;8;0;-6\right\}\)

Vì n nguyên => \(3n\in\left\{0;-6\right\}\Rightarrow n\in\left\{0;-2\right\}\)

Vậy n \(\in\left\{0;-2\right\}\)

19 tháng 5 2017

\(D=\frac{3n+5}{2n+3}\)

=> \(2D=\frac{6n+10}{2n+3}=\frac{6n+9+1}{2n+3}=\frac{3\left(2n+3\right)+1}{2n+3}\)

=> \(2D=3+\frac{1}{2n+3}\)

=> Để D là số nguyên thì 1 phải chia hết cho 2n+3 và \(\frac{1}{2n+3}\)phải là số lẻ

=> 2n+3 = {-1; 1}

+/ 2n+3=-1 => n=-2   => D=1

+/ 2n+3=1 => n=-1    => D=2

DD
16 tháng 6 2021

a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)

\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).

b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)

\(\Rightarrow n\in\left\{-1\right\}\)

c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra 

.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)

Thử lại thỏa mãn. 

4 tháng 8 2021

a, bạn sửa lại đề nhé 

b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)

\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

2n + 31-1
2n-2-4
n-1-2 

\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)

\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n - 31-17-7
n4210-4

Đề bài yêu cầu gì?

5 tháng 4 2022

đề bài

17 tháng 2 2019

A = \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)

   = \(\frac{2n+1+3n-5-4n+5}{n-3}\)

   = \(\frac{n+1}{n-3}\)=  \(\frac{\left(n-3\right)+4}{n-3}\)\(1+\frac{4}{n-3}\)

Để A nhận giá trị nguyên <=> \(1+\frac{4}{n-3}\inℤ\)<=> \(\frac{4}{n-3}\inℤ\)<=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Ta lập bảng giá trị:

n-3-4-2-1124
n-112457

Vậy...

 

15 tháng 3 2023

Để 3n-1/2n+1 ∈ Z thì 3n-1⋮2n+1

Mà 2n+1 ⋮2n+1 => (3n-1)-(2n+1)⋮2n+1 => n-2⋮2n+1=> 2(n-2)⋮2n+1

=> 2n-4 ⋮2n+1

Mà 2n+1 ⋮2n+1 => (2n+1)-(2n-4) ⋮2n+1 =>5 ⋮2n+1

Mà n ∈ Z => 2n+1 ∈ Z

=> 2n+1 ∈ {1; 5; -1; -5}

=> n ∈ {0; 2; -1; -3}

Thử lại thỏa mãn.

Vậy n ∈ {0; 2; -1; -3}

10 tháng 5 2022

\(A=\dfrac{-\left(6-2n\right)+5}{3-n}=\dfrac{-2\left(3-n\right)+5}{3-n}=-2+\dfrac{5}{3-n}\)

Để A nguyên => 3-n = Ước của 5

\(\Rightarrow3-n=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{8;4;2;-2\right\}\)