K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Đề bị sai 

2 tháng 8 2017

Sửa đề . \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{n\left(n+2\right)}=\frac{71}{216}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\right)=\frac{71}{216}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{n+2}\right)=\frac{71}{216}\)

\(\Leftrightarrow\frac{1}{n+2}=1-\frac{71}{216}\div\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{n+2}=\frac{37}{108}\)

\(\Leftrightarrow x=\frac{34}{37}\Rightarrow\text{(đề sai) }\)

hơi khó đó tick mình nha Hoàng Thu Hà

29 tháng 4 2018

\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left\{\left(2x+1\right).\left(2x+3\right)\right\}}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\cdot\left(\frac{2x+3}{2x+3}-\frac{1}{2x+3}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\frac{2x+2}{2x+3}=\frac{49}{99}\)

\(\frac{2x+2}{2x+3}=\frac{49}{99}:\frac{1}{2}\)

\(\frac{2x+2}{2x+3}=\frac{98}{99}\)

=) \(2x+2=98\)và \(2x+3=99\)

TH1 : \(2x+2=98\)

\(2x=98-2\)

\(2x=96\)

\(x=96:2\)

\(x=48\)( THỎa mãn )

TH2 : 
\(2x+3=99\)

\(2x=99-3\)

\(2x=96\)

\(x=96:2\)

\(x=48\)( THỎa mãn )

Vậy x = 48

29 tháng 4 2018

Đặt A=

23 tháng 8 2016

1.Gấp 2 lần tổng kia lên,có nghĩa nhân 2 với mỗi phân số.

2.Tách ra làm hiệu như bình thường giống 1 phần 1 nhân 2.

3.Hủy những số đối nhau.

4.Tính phép tính cuối cùng.

5.Chia kết quả cho 2.

Học tốt^^

23 tháng 8 2016

1.Gấp 2 lần tổng kia lên,có nghĩa nhân 2 với mỗi phân số.

2.Tách ra làm hiệu như bình thường giống 1 phần 1 nhân 2.

3.Hủy những số đối nhau.

4.Tính phép tính cuối cùng.

5.Chia kết quả cho 2.

Học tốt^^

21 tháng 3 2016

<=>2-2/3+2/3-2/5........+2n-2n+2<2015/2016

<=>2-2n+2<2015/2016

=>n+2=1/2016

=>n=2014

21 tháng 3 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{n\left(n+2\right)}\)<\(\frac{2015}{2016}\)

VT=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{5}-\frac{1}{n+2}\)=\(1-\frac{1}{n+2}\)

Ta có:\(1-\frac{1}{n+2}=\frac{2015}{2016}\Rightarrow\)\(\frac{1}{n+2}=1-\frac{2015}{2016}\)

\(\Rightarrow\)\(\frac{1}{n+2}=\frac{1}{2016}=n+2=2016\)

\(\Rightarrow\)\(n=2014\)

Vậy\(n=2014\)