Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
2B = 2x2 + 2y2 + 2xy - 6x - 6y + 4026
= (x2 + 2xy + y2) - (4x + 4y) + (x2 - 2x + 1) + (y2 - 2y + 1) + 4 + 4020
= (x + y)2 - 4(x + y) + 4 + (x - 1)2 + (y - 1)2 + 4020
= (x + y -2)2 + (x - 1)2 + (y - 1)2 + 4020 \(\ge4020\)
=> B\(\ge2010\)
Đạt được khi x = y = 1
Gọi \(A=x^2+y^2+xy-3x-3y-3\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-6\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-6\)
\(=\left(x-1\right)^2+2\left(x-1\right)\frac{1}{2}\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2+\frac{3}{4}\left(y-1\right)^2-6\)
\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)Có GTNN là -6
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2=0\\\frac{3}{4}\left(y-1\right)^2=0\end{cases}\Rightarrow x=y=1}\)
Vậy GTNN của A là -6 tại x = y = 1
A= x2+y2+xy-3x-3y-3
\(=\left[x-1+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1+\frac{1}{2}\left(y-1\right)=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy.............
bạn tham khảo đi Tìm GTNH: P=x^2+xy+y^2-3x-3y+2010? | Yahoo Hỏi & Đáp
Đặt biểu thức là A
\(x^2+xy+y^2-3x-3y+2018\)
\(=\left(x^2+xy+y^2\right)-\left(3x+3y\right)+2018\)
\(=\left(x+y\right)^2-3\left(x+y\right)+2018\)
Ta có : (x - y)² ≥ 0
<=> x² + y² ≥ 2xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
<=> xy ≤ (x + y)²/4
<=> -xy ≥ -(x + y)²/4
--> A ≥ (x + y)² - 3(x + y) - (x + y)²/4
<=> A ≥ 3(x + y)²/4 - 3(x + y)
để dễ nhìn,ta đặt t = x + y
--> A ≥ 3t²/4 - 3t = 3(t²/4 - 2.t/2 + 1) - 3 = 3(t/2 - 1)² - 3 ≥ -3
Dấu " = " xảy ra <=> t/2 = 1 <=> t = 2 <=> x + y = 2 và x = y --> x = y = 1
Vậy MinA = -3 <=> x = y = 1
\(H=x^2+xy+y^2-3x-3y\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-3\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-3\)
\(=\left[\left(x-1\right)^2+2.\frac{1}{2}.\left(x-1\right)\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2\right]+\frac{3}{4}\left(y-1\right)^2-3\)
\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-3\)
Vì \(\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2\ge0\forall x;y\)
\(\Rightarrow H=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-3\ge-3\forall x;y\) có GTNN là - 3
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2=0\\\frac{3}{4}\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy \(H_{min}=-3\) tại \(x=1;y=1\)
\(A=\left(y^2+2y\left(x+1\right)+\left(x+1\right)^2\right)+\left(2x^2-2x+2-\left(x+1\right)^2\right)\)
\(=\left(y+x+1\right)^2+\left(x-2\right)^2-3\ge-3\)
Min A=-3 khi x=2;y=-3
\(B=\left(x^2+x\left(y-3\right)+\frac{\left(y-3\right)^2}{4}\right)+\left(y^2-3y-\frac{\left(y-3\right)^2}{4}\right)\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)-12}{4}\)
\(=\left(....\right)^2+\frac{3}{4}\left(y-1\right)^2-3\ge3\)
Min B=-3 khi y=1;x=1
\(A=\frac{1}{4}\left(4x^2+4y^2+4xy-12x-12y\right)+2006\)
\(A=\frac{1}{4}\left(x^2+4y^2+9+4xy-6x-12y\right)+\frac{3}{4}\left(x^2-2x+1\right)+2003\)
\(A=\frac{1}{4}\left(x+2y-3\right)^2+\frac{3}{4}\left(x-1\right)^2+2003\ge2003\)
\(\Rightarrow A_{min}=2003\) khi \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
a, \(x^2-x-12=0\)
\(x^2+\left(-x\right)+\left(-12\right)=0\)
\(\Delta=-1^2-4.1.\left(-12\right)=1+48=49>0\)
Nên pt có 2 nghiệm phân biệt
\(x_1=\frac{1-\sqrt{49}}{2.1}=\frac{1-7}{2}=-\frac{6}{2}=-3\)
\(x_2=\frac{1+\sqrt{49}}{2.1}=\frac{1+7}{2}=\frac{8}{2}=4\)
\(P=x^2-xy+y^2-3x-3y+16\)
\(2P=2x^2-2xy+2y^2-6x-6y+32\)
\(2P=\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+\left(y^2-6x+9\right)+14\)
\(2P=\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2+14\ge14\)
Dấu "=" xảy ra tại \(x=y=3\)
Mình đoán đề bị sai,mình đã sửa rồi nhé !
Cám ơn bạn