K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2021

a) y=\(sin^4x+cos^4x-3=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-3=-2-\dfrac{1}{2}.sin^22x\)

Có \(0\le sin^22x\le1\)

\(\Leftrightarrow-2\ge y\ge-\dfrac{5}{2}\)

Min xảy ra \(\Leftrightarrow sin^22x=1\Leftrightarrow sin2x=1\Leftrightarrow2x=\dfrac{\Pi}{2}+k2\Pi\left(k\in Z\right)\)

\(\Leftrightarrow x=\dfrac{\Pi}{4}+k\Pi\left(k\in Z\right)\)

Max xảy ra \(\Leftrightarrow sin2x=0\Leftrightarrow2x=k\Pi\Leftrightarrow x=\dfrac{k\Pi}{2}\)

 

17 tháng 5 2021

b, \(x\in\left[0;\pi\right]\)

x 0 π x-π /4 -π /4 3π /4 π /2 sin(x-π /4) -√2/2 1 √2/2

=>\(sin\left(x-\dfrac{\pi}{4}\right)\in\left[-\dfrac{\sqrt{2}}{2};1\right]\)

\(\Leftrightarrow2sin\left(x-\dfrac{\pi}{4}\right)\in\left[-\sqrt{2};2\right]\)

\(\Rightarrow\left\{{}\begin{matrix}Miny=-\sqrt{2}\\Maxy=2\end{matrix}\right.\)

Min xảy ra \(\Leftrightarrow x=0\)

Max xảy ra \(\Leftrightarrow x=\dfrac{\pi}{2}\)

 

12 tháng 9 2021

1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)

 \(y=2-\left(-cosx\right).\left(-sinx\right)\)

y = 2 - sinx.cosx

y = \(2-\dfrac{1}{2}sin2x\)

Max = 2 + \(\dfrac{1}{2}\) = 2,5

Min = \(2-\dfrac{1}{2}\) = 1,5

2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)

Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)

Max = \(\sqrt{5}\)