K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
20 tháng 3 2022

từ phương trình số 2 ta có 
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)

lần lượt thay vào 1 ta có 

\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)

vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)

NV
20 tháng 1 2022

Do \(x^2+y^2=1\Rightarrow-1\le x;y\le1\Rightarrow\left\{{}\begin{matrix}y+1\ge0\\1-y\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y^2\left(y+1\right)\ge0\\y^2\left(1-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y^3\ge-y^2\\y^3\le y^2\end{matrix}\right.\)

Với mọi số thực x ta có:

\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x\ge-x^2-1\\2x\le x^2+1\end{matrix}\right.\)

Do đó: \(\left\{{}\begin{matrix}P=2x+y^3\ge-x^2-1-y^2=-2\\P=2x+y^3\le x^2+1+y^2=2\end{matrix}\right.\)

\(P_{min}=-2\) khi \(\left(x;y\right)=\left(-1;0\right)\)

\(P_{max}=2\) khi \(\left(x;y\right)=\left(1;0\right)\)

NV
20 tháng 4 2022

\(\left(x^2+9\right)+\left(y^2+9\right)+3\left(x^2+y^2\right)\ge6x+6y+6xy=90\)

\(\Rightarrow4\left(x^2+y^2\right)+18\ge90\)

\(\Rightarrow x^2+y^2\ge18\)

\(P_{min}=18\) khi \(x=y=3\)

\(x+y+xy=15\Rightarrow\left\{{}\begin{matrix}x\le15\\y\le15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\left(x-15\right)\le0\\y\left(y-15\right)\le0\end{matrix}\right.\)

\(\Rightarrow x^2+y^2\le15x+15y\) (1)

Cũng từ đó ta có: \(\left(x-15\right)\left(y-15\right)\ge0\Rightarrow xy\ge15x+15y-225\)

\(\Rightarrow16x+16y-225\le x+y+xy=15\)

\(\Rightarrow x+y\le15\) (2)

(1);(2) \(\Rightarrow x^2+y^2\le15.15=225\)

\(P_{max}=225\) khi \(\left(x;y\right)=\left(0;15\right);\left(15;0\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:

Nếu $y=0$ thì $x^2=1$. Khi đó $P=2$

Nếu $y\neq 0$. Đặt $\frac{x}{y}=t$ thì:

$P=\frac{2(x^2+6xy)}{x^2+2xy+3y^2}=\frac{2(t^2+6t)}{t^2+2t+3}$

$P(t^2+2t+3)=2t^2+12t$

$t^2(P-2)+2(P-6)t+3P=0$

$\Delta'=(P-6)^2-3P(P-2)\geq 0$

$\Leftrightarrow (P-3)(P+6)\leq 0$

$\Leftrightarrow -6\leq P\leq 3$ nên $P_{\max}=3$
Vậy $P_{\max}=3$
Giá trị này đạt tại $(x,y)=(\frac{3}{\sqrt{10}}; \frac{1}{\sqrt{10}})$ hoặc $(\frac{-3}{\sqrt{10}}; \frac{-1}{\sqrt{10}})$

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

(2) có nghiệm khi Delta' lớn hơn hoặc bằng 0

Hơn nữa, công thức Delta' của em bị nhầm.

2 tháng 12 2016

Tu x+3y=1nen x=1-3y                                                                                                                                                                           Ta co A=(1-3y)2+y2=1-6y+9y2+y2                                                                                                                                                                 =10y2-6y+1                                                                                                                                                                                     =10(y2-3/5y+1/10)                                                                                                                                                                             =10(y2-2x3/10y+9/100+1/100)                                                                                                                                                           =10(y-3/10)2+1/10                                                                                                                                                                      Vi 10(y-3/10)2>=0                                                                                                                                                                 nen 10(y-3/10)2+1/10>=1/10

vay min A=1/10