K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

2 tháng 10 2021

\(1,\)

Áp dụng BĐT Bunhiacopski:

\(A^2=\left(\sqrt{3-x}+\sqrt{x+7}\right)^2\le\left(1^2+1^2\right)\left(3-x+x+7\right)=2\cdot10=20\)

Dấu \("="\Leftrightarrow3-x=x+7\Leftrightarrow x=-2\)

 

2 tháng 10 2021

\(A^2=3-x+x+7+2\sqrt{\left(3-x\right)\left(x+7\right)}\\ A^2=10+2\sqrt{\left(3-x\right)\left(x+7\right)}\ge10\)

Dấu \("="\Leftrightarrow\left(3-x\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)

8 tháng 9 2020

\(đk:x-1\ge0\Rightarrow x\ge1\text{ và }2-x\ge0\Rightarrow x\le2\)

có : \(\left(4\sqrt{x-1}+3\sqrt{2-x}\right)^2\le\left(4^2+3^2\right)\left[\left(\sqrt{x-1}\right)^2+\left(\sqrt{2-x}\right)\right]\)

\(\Rightarrow A^2\le25\left(x-1+2-x\right)\)

\(\Rightarrow A^2\le25\) mà \(A\ge0\)

\(\Rightarrow A\le5\)

Dấu = xảy ra <=> \(\frac{4}{\sqrt{x-1}}=\frac{3}{\sqrt{2-x}}\)      đk : x khác 1 và x khác 2

\(\Leftrightarrow\frac{16}{x-1}=\frac{9}{2-x}\)

\(\Leftrightarrow32-16x=9x-9\)

\(\Leftrightarrow25x=41\Leftrightarrow x=\frac{41}{25}\left(tm\right)\)

vậy max a = 5 khi x = 41/25

30 tháng 7 2018

\(A=\dfrac{1}{x^2+3x+7}=\dfrac{1}{\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{19}{4}}=\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}}\le\dfrac{1}{\dfrac{19}{4}}=\dfrac{4}{19}\)\(\Rightarrow Max_A=\dfrac{4}{19}\Leftrightarrow x=-\dfrac{3}{2}\)

\(B=\sqrt{4-x^2}\le\sqrt{4-0^2}=\sqrt{4}=2\)

\(\Rightarrow Max_B=2\Leftrightarrow x=0\)

15 tháng 6 2018

Bạn bình phương P lên rồi tách hết ra