K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

\(B=\sqrt{\left(7x-\frac{11}{7}\right)^2+\left(\frac{8\sqrt{5}}{7}\right)^2}+\sqrt{\left(7x+\frac{11}{7}\right)^2+\left(\frac{8\sqrt{5}}{7}\right)^2}\)

\(B=\sqrt{\left(\frac{11}{7}-7x\right)^2+\left(\frac{8\sqrt{5}}{7}\right)^2}+\sqrt{\left(7x+\frac{11}{7}\right)^2+\left(\frac{8\sqrt{5}}{7}\right)^2}\)

dùng Bất đẳng thức Bunyakovsky

\(B\ge\sqrt{\left(\frac{22}{7}\right)^2+\left(\frac{16\sqrt{5}}{7}\right)^2}\)

\(B\ge6\)

dấu "=" khi x=0

12 tháng 7 2021

\(49x^2-22x+9=\left(7x\right)^2-2.7.\dfrac{11}{7}x+\dfrac{121}{49}+\dfrac{320}{49}\)

\(=\left(7x-\dfrac{11}{7}\right)^2+\dfrac{320}{49}\ge\dfrac{320}{49}\) dấu"=" xảy ra<=>\(x=\dfrac{11}{49}\)

\(=>\sqrt{49x^2-22x+9}\ge\)\(\sqrt{\dfrac{320}{49}}=\dfrac{8\sqrt{5}}{7}\)

\(=>B\ge\dfrac{8\sqrt{5}}{7}+8\sqrt{38}\)

Vd1: 

d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)

\(\Leftrightarrow x=6\)

\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)

\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)