K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 11 2021

Đặt \(\sqrt{x^2+4x+5}=t\Rightarrow t\in\left[\sqrt{5};\sqrt{17}\right]\)

\(\Rightarrow y=f\left(t\right)=t^2-2t+7\)

\(-\dfrac{b}{2a}=1\notin\left[\sqrt{5};\sqrt{17}\right]\)

\(f\left(\sqrt{5}\right)=10+4\sqrt{5}\) ; \(f\left(\sqrt{17}\right)=22+4\sqrt{17}\)

\(\Rightarrow y_{min}=10+4\sqrt{5}\) ; \(y_{max}=22+4\sqrt{17}\)

3 tháng 11 2021

|x^2-x-m|=2x-1.Tìm m để pt có 4 nghiệm phân biệt

giúp ạ

17 tháng 4 2022

1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3

= 1-x/x + (2-2(1-x))/1-x  + 3

= 1-x/x + 2x/1-x + 3    >= 2√2 + 3

Dấu "=" xảy ra khi x =√2 - 1

17 tháng 4 2022

2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)

=> P = √z-1 / z + √x-2 / x + √y-3 / y 

= a/a^2+1 + b/b^2+2 + c/c^2+3

a^2+1 >= 2a              => a/a^2+1 <= 1/2

b^2+2 >= 2√2 b          => b/b^2+2 <= 1/2√2

c^2+3 >= 2√3 c            => c/c^2+3 <= 1/2√3

=> P <= 1/2 + 1/2√2 + 1/2√3

Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3

<=> z-1 = 1, x-2 = 2, y-3 = 3

<=> x=4, y=6, z=2

NV
9 tháng 4 2021

\(P=\dfrac{4x^2+2xy-\left(x^2+y^2\right)}{2xy-2y^2+3\left(x^2+y^2\right)}=\dfrac{3x^2+2xy-y^2}{3x^2+2xy+y^2}\)

Biểu thức này không tồn tại max mà chỉ tồn tại min

\(P=\dfrac{-2\left(3x^2+2xy+y^2\right)+9x^2+6xy+y^2}{3x^2+2xy+y^2}=-2+\dfrac{\left(3x+y\right)^2}{2x^2+\left(x+y\right)^2}\ge-2\)

NV
8 tháng 4 2021

Bạn coi lại mẫu số

3 tháng 1 2021

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0=>x^2+y^2\ge2xy\\\left(x+y\right)^2\ge0=>x^2+y^2\ge-2xy\end{matrix}\right.\)

Ta có:

\(\left\{{}\begin{matrix}2\left(x^2+y^2\right)+xy\ge5xy\\2\left(x^2+y^2\right)+xy\ge-3xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\ge5xy\\1\ge-3xy\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{1}{3}\le xy\le\dfrac{1}{5}\)

Ta có:

P=\(2\left(x^2+y^2\right)^2-4x^2y^2+2+\left(x^2+y^2+2xy\right)\)

P= \(\dfrac{2\left(1-xy\right)^2}{4}-4\left(xy\right)^2+2+\left(\dfrac{1-xy}{2}+2xy\right)\)

=\(\dfrac{\left(xy\right)^2-2xy+1}{2}-4\left(xy\right)^2+2+\dfrac{3xy}{2}+\dfrac{1}{2}\)

Đặt t = xy => \(-\dfrac{1}{3}\le t\le\dfrac{1}{5}\)

Ta có : 

P= \(\dfrac{-7t^2}{2}+\dfrac{t}{2}+3=-\dfrac{7}{2}\left(t-\dfrac{1}{14}\right)^2+\dfrac{169}{56}\)

Ta có: \(-\dfrac{1}{3}-\dfrac{1}{14}\le t-\dfrac{1}{14}\le\dfrac{1}{5}-\dfrac{1}{14}\)

<=>\(-\dfrac{17}{42}\le t-\dfrac{1}{14}\le\dfrac{9}{70}\)

=> 0\(\le\left(t-\dfrac{1}{14}\right)^2\le\left(\dfrac{17}{42}\right)^2\)

\(\dfrac{169}{56}\ge P\ge\dfrac{169}{56}-\dfrac{7}{2}\left(\dfrac{17}{42}\right)^2\)

Max P= \(\dfrac{169}{56}\) => t = 1/14 => \(xy=\dfrac{1}{14}\rightarrow x^2+y^2=\dfrac{13}{14}\) => x,y=...

Min P=\(\dfrac{169}{56}-\dfrac{7}{6}\left(\dfrac{17}{42}\right)^2\) <=> \(t=xy=-\dfrac{1}{3}\)

<=> x=-y=\(\dfrac{1}{\sqrt{3}}\) 

8 tháng 6 2018

\(\dfrac{x+2y+1}{x^2+y^2+7}=\dfrac{x+2y+1}{\left(x^2+1\right)+\left(y^2+4\right)+2}\le\dfrac{x+2y+1}{2x+4y+2}=\dfrac{1}{2}\)(BĐT Cô-si)

27 tháng 6 2021

b, Ta có : \(0\le x\le1\)

\(\Rightarrow-2\le x-2\le-1< 0\)

Ta có : \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left(2-x\right)}\)

\(=2\left(m-1\right)x-m< 0\)

TH1 : \(m=1\) \(\Leftrightarrow m>0\)

TH2 : \(m\ne1\) \(\Leftrightarrow x< \dfrac{m}{2\left(m-1\right)}\)

\(0\le x\le1\)

\(\Rightarrow\dfrac{m}{2\left(m-1\right)}>1\)

\(\Leftrightarrow\dfrac{m-2\left(m-1\right)}{2\left(m-1\right)}>0\)

\(\Leftrightarrow\dfrac{2-m}{m-1}>0\)

\(\Leftrightarrow1< m< 2\)

Kết hợp TH1 => m > 0

Vậy ...
 

27 tháng 6 2021

\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\)

Để pt có hai nghiệm thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\x_1+x_2=2\left(m-1\right)\le4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-2\right)\left(m+2\right)\ge0\\m\le3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m\in\left[-2;0\right]\cup\left(2;+\infty\right)\cup\left\{2\right\}\\m\le3\end{matrix}\right.\)\(\Rightarrow m\in\left[-2;0\right]\cup\left[2;3\right]\)

\(P=x^3_1+x_2^3+x_1x_2\left(3x_1+3x_2+8\right)\)

\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_1\left(x_1+x_2\right)+8x_1x_2\)

\(=8\left(m-1\right)^3+8\left(-m^3+m^2+2m+1\right)\)

\(=-16m^2+40m\)

Vẽ BBT với \(f\left(m\right)=-16m^2+40m\) ;\(m\in\left[-2;0\right]\cup\left[2;3\right]\)

Tìm được \(f\left(m\right)_{min}=-144\Leftrightarrow m=-2\)

\(f\left(m\right)_{max}=16\Leftrightarrow m=2\)

\(\Rightarrow P_{max}=16;P_{min}=-144\)

Vậy....

14 tháng 6 2017

\(\left\{{}\begin{matrix}x+a+b+c=7\\x^2+a^2+b^2+c^2=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=7-x\\a^2+b^2+c^2=13-x^2\end{matrix}\right.\)

Mà ta có:

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)

\(\Rightarrow13-x^2\ge\dfrac{\left(7-x\right)^2}{3}\)

\(\Leftrightarrow2x^2-7x+5\le0\)

\(\Leftrightarrow1\le x\le\dfrac{5}{2}\)

Vậy min là 1 khi \(\left\{{}\begin{matrix}x=1\\a=b=c=2\end{matrix}\right.\)

Max là \(\dfrac{5}{2}\) khi \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\a=b=c=\dfrac{3}{2}\end{matrix}\right.\)