Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
a) \(\left(x-1\right)^3=125\)
=> \(\left(x-1\right)^3=5^3\)
=> \(x-1=5\)
=> \(x=5+1\)
=> \(x=6\)
Vậy \(x=6.\)
b) \(2^{x+2}-2^x=96\)
=> \(2^x.\left(2^2-1\right)=96\)
=> \(2^x.3=96\)
=> \(2^x=96:3\)
=> \(2^x=32\)
=> \(2^x=2^5\)
=> \(x=5\)
Vậy \(x=5.\)
c) \(\left(2x+1\right)^3=343\)
=> \(\left(2x+1\right)^3=7^3\)
=> \(2x+1=7\)
=> \(2x=7-1\)
=> \(2x=6\)
=> \(x=6:2\)
=> \(x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!
3^x*5^x-1=224
3^x*5^x/5=224
15^x=224*5
15^x=1120
=>ko tồn tại x thỏa mãn đề bài vị 15^x luôn có tận cùng bằng 5 (x khác 0 ) hoặc 1 ( x=0) ma 1120 co tận cùng bằng 0
\(\left(\frac{-3}{5}\right)^n:\left(\frac{9}{25}\right)^3=-\frac{3}{5}\)
=> \(\left(-\frac{3}{5}\right)^n:\left[\left(-\frac{3}{5}\right)^2\right]^3=-\frac{3}{5}\)
=> \(\left(-\frac{3}{5}\right)^n:\left(-\frac{3}{5}\right)^6=-\frac{3}{5}\)
=> \(\left(-\frac{3}{5}\right)^n=\left(-\frac{3}{5}\right)^7\)
=> n = 7
\(\frac{\left(-\frac{3}{5}\right)^n}{\left(\frac{9}{25}\right)^n}=-\frac{3}{5}\)
\(\left(-\frac{\frac{3}{5}}{\frac{9}{25}}\right)^n=-\frac{3}{5}\)
\(-\left(\frac{5}{3}\right)^n=-\frac{3}{5}\)
\(\left(\frac{5}{3}\right)^n=\frac{3}{5}\)
Vậy n = -1
a) \(9.3^3.\frac{1}{81}.3^2=3^2.3^3.\frac{1}{3^4}.3^2=3^7.\frac{1}{3^4}=3^3\)
b) \(4.2^5:\left(2^3.\frac{1}{16}\right)=2^2.2^5:2^3:\frac{1}{16}=2^7:2^3.16=2^4.2^4=2^8\)
c) \(3^2.2^5.\left(\frac{2}{3}\right)^2=3^2.2^5.\frac{2^2}{3^2}=2^5.2^2=2^7\)
d) \(\left(\frac{1}{3}\right)^2.\frac{1}{3}.9^2=\left(\frac{1}{3}\right)^3.\left(3^2\right)^2=\frac{1^3}{3^3}.3^4=1^3.3=3^1\)
a) \(\left(\frac{1}{3}\right)^m=\frac{1}{81}\)
\(\Rightarrow\frac{1}{3^m}=\frac{1}{81}\)
<=> 3m = 81
=> 3m = 34 ( 81 = 34 )
<=> m = 4
b) \(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\)
\(\left(\frac{3}{5}\right)^n=\frac{9}{9765625}\)
\(\Rightarrow\frac{3}{5^n}=\frac{9}{9765625}\)
=> 5n = 9765625
=> 5n = 510 ( 9765625 = 510 )
<=> n = 10
\(\left(-0,25\right)^p=\frac{1}{256}\)
\(\left(\frac{-1}{4}\right)^p=\frac{1}{256}\)
\(\Rightarrow\frac{-1}{4^p}=\frac{1}{256}\)
=> 4p = 256
=> 4p = 44 ( 256 = 44 )
<=> p = 4