K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 3 2022

Lời giải:
Để ý rằng nếu $x=t$ là 1 nghiệm của pt thì $x=-t$ cũng là nghiệm.

Do đó để pt đã cho có đúng 1 nghiệm thì nghiệm đó phải bằng $0$ 

PT đã cho có nghiệm $0$ 

$\Leftrightarrow 0^4+(1-2m).0+m^2-1=0$

$\Leftrightarrow m^2-1=0$

$\Leftrightarrow m=\pm 1$

Thay lại pt ban đầu thấy $m=-1$ là thỏa mãn pt có đúng 1 nghiệm.

NV
16 tháng 12 2020

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

16 tháng 12 2020

giải thích cho em bài 1 cái đoạn TH1,TH2 với ạ

5 tháng 3 2021

2.

b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)

\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)

\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)

\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)

Vậy \(m\in\left(-2;4\right)\)

5 tháng 3 2021

2.

a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m>5\)

17 tháng 5 2021

Đặt \(f\left(x,m\right)=\left(m^2+1\right)x^2+\left(2m+1\right)x-5\)

\(ycbt\Leftrightarrow\hept{\begin{cases}f\left(-1,m\right)\le0\\f\left(1,m\right)\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2-2m-5\le0\\m^2+2m-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}1-\sqrt{6}\le m\le1+\sqrt{6}\\-3\le m\le1\end{cases}}\)

\(\Leftrightarrow1-\sqrt{6}\le m\le1\)

19 tháng 5 2021

Đặt ƒ (x,m)=(m2+1)x2+(2m+1)x−5

ycbt⇔{

ƒ (−1,m)≤0
ƒ (1,m)≤0

⇔{

m2−2m−5≤0
m2+2m−3≤0

⇔{

1−√6≤m≤1+√6
−3≤m≤1

⇔1−√6≤m≤1

NV
10 tháng 1 2021

\(\left(x+\dfrac{1}{x}\right)^2-2m\left(x+\dfrac{1}{x}\right)+2m-1=0\)

Đặt \(x+\dfrac{1}{x}=t\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-2\end{matrix}\right.\)

\(t^2-2mt+2m-1=0\)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)-2m\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left(t+1-2m\right)=0\)

\(\Leftrightarrow t=2m-1\Rightarrow\left[{}\begin{matrix}2m-1\ge2\\2m-1\le-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\ge\dfrac{3}{2}\\m\le-\dfrac{1}{2}\end{matrix}\right.\)

NV
15 tháng 1 2021

- Với \(m=2\) BPT luôn có nghiệm

- Với \(m\ne2\) BPT vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m-2< 0\\\Delta'=\left(m+1\right)^2-2m\left(m-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\-m^2+6m+1\le0\end{matrix}\right.\)

\(\Rightarrow m\le3-\sqrt{10}\)

NV
29 tháng 7 2021

- Với \(m=\dfrac{1}{2}\) ko thỏa mãn

- Với \(m\ne\dfrac{1}{2}\)

\(\Leftrightarrow\left(2m-1\right)x^3-\left(2m-1\right)x^2-\left(m-2\right)x^2+\left(m-4\right)x+2\ge0\)

\(\Leftrightarrow\left(2m-1\right)x^2\left(x-1\right)-\left(x-1\right)\left[\left(m-2\right)x+2\right]\ge0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2m-1\right)x^2-\left(m-2\right)x-2\right]\ge0\) (1)

Do (1) luôn chứa 1 nghiệm \(x=1\in\left(0;+\infty\right)\) nên để bài toán thỏa mãn thì cần 2 điều sau đồng thời xảy ra:

+/ \(2m-1>0\Rightarrow m>\dfrac{1}{2}\)

+/ \(\left(2m-1\right)x^2-\left(m-2\right)x-2=0\) có 2 nghiệm trong đó \(x_1\le0\) và \(x_2=1\)

Thay \(x=1\) vào ta được:

\(\left(2m-1\right)-\left(m-2\right)-2=0\Leftrightarrow m=1\)

Khi đó: \(x^2+x-2=0\) có 2 nghiệm \(\left[{}\begin{matrix}x_1=-2< 0\left(thỏa\right)\\x_2=1\end{matrix}\right.\)

Vậy \(m=1\)