Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(đk:\left\{{}\begin{matrix}\Delta\ge0\\0< x1\le x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5^2-4\left(-m^2+m+6\right)\ge0\\\left\{{}\begin{matrix}x1+x2>0\\x1x2>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-4m+1=\left(2m-1\right)^2\ge0\left(đúng\right)\\\left\{{}\begin{matrix}5>0đúng\\-m^2+m+6>0\Leftrightarrow-2< m< 3\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-2< m< 3\)
\(\Rightarrow\dfrac{1}{\sqrt{x1}}+\dfrac{1}{\sqrt{x2}}=\dfrac{3}{2}\Leftrightarrow\dfrac{\sqrt{x1}+\sqrt{x2}}{\sqrt{x1x2}}=\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x1+x2+2\sqrt{x1x2}}{x1x2}=\dfrac{9}{4}\Leftrightarrow\dfrac{5+2\sqrt{-m^2+m+6}}{-m^2+m+6}=\dfrac{9}{4}\)
\(đặt::\sqrt{-m^2+m+6}=t\ge0\Rightarrow\dfrac{5+2t}{t^2}=\dfrac{9}{4}\)
\(\Rightarrow9t^2-8t-20=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{10}{9}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-m^2+m+6}=2\Leftrightarrow\left[{}\begin{matrix}m=2\left(tm\right)\\m=-1\left(tm\right)\end{matrix}\right.\)
a) Ta xét :
\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)
Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.
b) Dễ thấy : x1<x2 nên ta có :
\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)
\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)
\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)
\(\Leftrightarrow m=2\)
Vậy m = 2
ĐKXĐ:...
\(\sqrt{2x^2+\left(m-4\right)x+3}=x-2\)
\(\Leftrightarrow2x^2+mx-4x+3-x^2+4x-4=0\)
\(\Leftrightarrow x^2+mx-1=0\)
\(\Leftrightarrow.....\)
\(\Delta=25-4\left(m-2\right)=25-4m+8=33-4m\)
Để pt có 2 nghiệm pb khi m =< 33/4
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=\dfrac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=2\)
Thay vào ta được : \(\dfrac{-7}{m-2+5+1}=2\Leftrightarrow\dfrac{-7}{m+4}=2\Rightarrow-7=2m+8\Leftrightarrow m=-\dfrac{15}{2}\)(tm)
\(Pt:x^2+5x+m-2=0.có.2.nghiệm.phân.biệt\\ x_1,x_2\ne1\\ \Leftrightarrow\left\{{}\begin{matrix}\Delta=5^2-4\left(m-2\right)=33-4m>0\\1^2+5.1+m-2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{33}{4}\\m\ne-4\end{matrix}\right.\)
Theo định lí Vi ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\\ Từ.giả.thiết:\\ \dfrac{ 1}{x_1-1}+\dfrac{1}{x_2-1}=2\\ \Rightarrow x_2-1+x_1-1=2\left(x_1-1\right)\left(x_2-1\right)\\ \Leftrightarrow\left(x_1+x_2\right)-2=2\left[x_1x_2-\left(x_1+x_2\right)+1\right]\\ \Leftrightarrow-5-2=2\left(m-2+5+1\right)\Leftrightarrow-7=2\left(m+4\right)\\ \Rightarrow m=\dfrac{-15}{2}\)
Thay x=3 vào pt ta có:
\(\dfrac{2}{x-m}-\dfrac{5}{x+m}=1\\ \Leftrightarrow\dfrac{2}{3-m}-\dfrac{5}{3+m}=1\\ \Leftrightarrow\dfrac{2\left(3+m\right)-5\left(3-m\right)}{\left(3-m\right)\left(3+m\right)}=1\\ \Rightarrow6+2m-15+5m=3^2-m^2\\ \Leftrightarrow-9+7m-9+m^2-0\\ \Leftrightarrow m^2+7m-18=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m=-9\end{matrix}\right.\)