Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5x+1=m-2\sqrt{6+5x-x^2}\) (đk: \(x\in\left[-1;6\right]\))
\(\Leftrightarrow7-\left(6+5x-x^2\right)=m-2\sqrt{6+5x-x^2}\)
\(Đặt \) \(a=\sqrt{6+5x-x^2}\left(a\ge0\right)\)
(bình phương cái vừa đặt lên, tìm được \(\Delta_x=49-4a^2\) nên với mỗi \(a\in\left[0;\dfrac{7}{2}\right]\backslash\left\{\dfrac{7}{2}\right\}\) sẽ có 2 nghiệm x phân biệt)
pttt: \(7-a^2=m-2a\)
\(\Leftrightarrow a^2-2a-7=-m\) (*)
BBT \(f\left(x\right)=a^2-2a-7\) với \(a\in\left[0;\dfrac{7}{2}\right]\backslash\left\{\dfrac{7}{2}\right\}\)
nên để pt ban đầu có 2 nghiệm x phân biệt <=>pt (*) có 1 nghiệm <=> \(\left[{}\begin{matrix}-m=-8\\-7< -m< \dfrac{7}{4}\end{matrix}\right.\) hay \(\left[{}\begin{matrix}m=8\\\dfrac{7}{4}< m< 7\end{matrix}\right.\)
Ý A
\(f\left(a\right)=a^2-2a-7\) chứ không phải f(x) đâu nha
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?
a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.
b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.