Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}>0\)
Mà \(\sqrt{\dfrac{m-2}{m+3}}\ge0\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}\ne0\Leftrightarrow m\ne2;m\ne-3\)
\(b,y=m^2x-5mx-6m=x\left(m^2-5m\right)-6m\)
Đồng biến \(\Leftrightarrow m^2-5m>0\Leftrightarrow m\left(m-5\right)>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>5\end{matrix}\right.\)
\(c,y=x\left(\dfrac{m+5}{m-2}-1\right)+\sqrt{m-2}=\dfrac{7}{m-2}x+\sqrt{m-2}\)
Đồng biến \(\Leftrightarrow\dfrac{7}{m-2}>0\Leftrightarrow m-2>0\Leftrightarrow m>2\)
a, \(A=5\sqrt{\dfrac{1}{1}}+\dfrac{5}{2}\sqrt{20}+\sqrt{80}=5+5\sqrt{5}+4\sqrt{5}=5+9\sqrt{5}\)
b, Vì \(\sqrt{2}-1>0\Rightarrow\) Hàm số đồng biến
c, Hai đường thẳng đã cho song song khi \(\left\{{}\begin{matrix}m^2+2=6\\m\ne2\end{matrix}\right.\Leftrightarrow m=-2\)
a: Để hàm số đồng biến trên R thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số, ta được:
m+3=5
hay m=2
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
a: Để hàm số trên là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m\ge0\\m\ne4\end{matrix}\right.\)
b: Để hàm số đồng biến thì \(\sqrt{m}-2>0\)
hay m>4
Hàm số bị viết thiếu `y=` !
Đk: `-2 <= m <= 2`
Để h/s đồng biến `=>\sqrt{4-m^2}/[9-m^2] > 0` với `-2 < m < 2`
`=>9-m^2 > 0`
`<=>(3-m)(3+m) > 0<=>(m-3)(m+3) < 0<=>-3 < m < 3`
Kết hợp đk
`=>-2 < m < 2`
`->bb C`
Chọn B