K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trường hợp 1: m=2

f(x)=2x+4

=>Loại

Trường hợp 2: m<>2

\(\text{Δ}=\left(4m-6\right)^2-4\left(m-2\right)\left(5m-6\right)\)

\(=16m^2-48m+36-4\left(5m^2-6m-10m+12\right)\)

\(=16m^2-48m+36-4\left(5m^2-16m+12\right)\)

\(=16m^2-48m+36-20m^2+64m-48\)

\(=-4m^2+16m-12\)

\(=-4\left(m-3\right)\left(m-1\right)\)

Để f(x)>=0 với mọi x thì \(\left\{{}\begin{matrix}-4\left(m-3\right)\left(m-1\right)< 0\\m-2>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;1\right)\cup\left(3;+\infty\right)\\m>=2\end{matrix}\right.\Leftrightarrow m\in\left(3;+\infty\right)\)

9 tháng 3 2022

Trường hợp 2 : m <>2 nghĩa là j v ạ

\(\Delta=\left(-2m+4\right)^2-4\cdot\left(-1\right)\left(m+3\right)\)

=4m^2-16m+16+4(m+3)

=4m^2-16m+16+4m+12

=4m^2-12m+28

Để f(x)<0 với mọi x thì 4m^2-12m+28<0 và -1<0

=>\(m\in\varnothing\)

27 tháng 11 2017

Chọn C.

m(x - m) - (x - 1) ≥ 0 ⇔ (m - 1)x ≥ m 2  - 1.

   +) m = 1 ⇒ x ∈ R. (không thỏa)

   +) Xét m > 1 thì (1) ⇔ x ≥ m + 1 không thỏa điều kiện nghiệm đã cho.

   +) Xét m < 1 thì (1) ⇔ x ≥ m + 1 thỏa điều kiện nghiệm đã cho.

Vậy m < 1.

2 tháng 3 2021

anh Tâm lý luận phần m>1 và m<1 hình như bị nhầm lẫn và không rõ ràng