K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2020

\(\Delta=\left(m+1\right)^2-8\ge0\Rightarrow\left[{}\begin{matrix}m\ge-1+2\sqrt{2}\\m\le-1-2\sqrt{2}\end{matrix}\right.\)

Phương trình ko có nghiệm \(x=0\) nên biểu thức đề bài luôn xác định

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=2\end{matrix}\right.\)

\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2=14\)

\(\Leftrightarrow\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2=16\)

\(\Leftrightarrow\left(\frac{x_1^2+x_2^2}{x_1x_2}\right)^2=16\Leftrightarrow\left(\frac{x_1^2+x_2^2}{2}\right)^2=16\)

\(\Leftrightarrow\frac{x_1^2+x_2^2}{2}=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(m-1\right)^2=12\Leftrightarrow\left[{}\begin{matrix}m=1+2\sqrt{3}\\m=1-2\sqrt{3}\left(l\right)\end{matrix}\right.\)

23 tháng 4 2020

Chỗ pt ko có nghiệm x = 0 là sao vậy ạ, mong bn giải thích giùm mình vs ạ

11 tháng 4 2020

Tự tìm delta nhé.

Áp dụng Viete: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m+2\end{matrix}\right.\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(2m-2\right)^2-2\left(m+2\right)}{m+2}=4\)

\(\Leftrightarrow4m^2-10m-4m-8=0\)

\(\Leftrightarrow4m^2-14m-8=0\)

\(\Leftrightarrow\left(m-4\right)\left(2m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=\frac{-1}{2}\end{matrix}\right.\)

NV
14 tháng 5 2020

\(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)\)

\(=5m^2-6m+9=5\left(m-\frac{3}{5}\right)^2+\frac{36}{5}>0;\forall m\)

Mặt khác \(-m^2+m-2\ne0;\forall m\Rightarrow\) biểu thức đề bài luôn xác định

\(B=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^3-6\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)\)

Xét \(A=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(m-1\right)^2-2\left(-m^2+m-2\right)}{-m^2+m-2}=\frac{3m^2-4m+5}{-m^2+m-2}\)

\(\Rightarrow-Am^2+Am-2A=3m^2-4m+5\)

\(\Leftrightarrow\left(A+3\right)m^2-\left(A+4\right)m+2A+5=0\)

\(\Delta=\left(A+4\right)^2-4\left(A+3\right)\left(2A+5\right)\ge0\)

\(\Leftrightarrow7A^2+36A+44\le0\Rightarrow-\frac{22}{7}\le A\le-2\)

Thay vào B:

\(B=A^3-6A\) với \(-\frac{22}{7}\le A\le-2\)

\(B=A^2\left(A+2\right)-2\left(A+1\right)\left(A+2\right)+4\)

Do \(A\le-2\Rightarrow\left\{{}\begin{matrix}A+2\le0\\\left(A+1\right)\left(A+2\right)\ge0\end{matrix}\right.\) \(\Rightarrow B\le4\)

\(\Rightarrow B_{max}=4\) khi \(A=-2\) hay \(m=1\)

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

Δ=(2m+2)^2-4(-m-5)

=4m^2+8m+4+4m+20

=4m^2+12m+24

=4(m^2+3m+6)

=4(m^2+2*m*3/2+9/4+15/4)

=4(m+3/2)^2+15>=15

=>PT luôn có 2 nghiệm

(x1-x2)^2-x1(x1+3)-x2(x2+3)=-4

=>(x1+x2)^2-4x1x2-(x1+x2)^2+2x1x2-3(x1+x2)=-4

=>-2(-m-5)-3(2m+2)=-4

=>2m+10-6m-6=-4

=>-4m+4=-4

=>-4m=-8

=>m=2

9 tháng 12 2021

Nếu ko trl đc thì bạn ko cần phải nói như v. C trl của bn sẽ tính là spam và gây ảnh hưởng tới các câu trl khác!

29 tháng 12 2021

Đúng rồi đó, Minh Sơn