K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

Vì h(x) có n là 1

H(1) = 1^2+a-2b=0

1+a-2b=0

a=2b-1

 Thay a= 2b-1 vào a+b=5 ta có

2b-1+b=5

3b=6

b=2

Mà a+b=5

a+2=5

a=3

Vậy b=2; a=3

18 tháng 4 2021

a/ \(M\left(x\right)=-x^2+5\)

Có \(-x^2\le0\forall x\)

=> \(M\left(x\right)\le5\forall x\)

=> M(x) không có nghiệm.

2/

Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có

\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)

\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)

\(\Leftrightarrow a=2\)

Vậy...

7 tháng 4 2021

Vì h(x) có nghiệm là 1

=> h(1)=0

=> a+5-4=0

<=> a+1=0<=> a=-1

8 tháng 4 2021

Đa thức có nghiệm là `1 =>x=1` thỏa mãn: `a.1^2+5.1-4=0`

`<=>a+1=0`

`<=>a=-1`

6 tháng 5 2023

a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)

dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.

7 tháng 5 2023

tại sao a7 + b = 5a + 2b lại bằng  2a = b vậy ạ

 

28 tháng 7 2017

a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)

=> \(1-a-9+b=27-9a-27+b\)

=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)

Từ đó tính được b = 9.

b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)

Đa thức f(x) có nghiệm khi:

\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)

\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)

Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.

DD
23 tháng 5 2021

1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

Với \(x=1\)\(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).

Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).

DD
23 tháng 5 2021

2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)

Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).

Ta có hệ: 

\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).

a) Thay x=-1 vào g(x),ta được:

\(2\cdot\left(-1\right)^2+5a=0\)

\(\Leftrightarrow5a=-2\)

hay \(a=-\dfrac{2}{5}\)

2 tháng 5 2018

Ta có Q (x) có nghiệm là 1

=> Q (1) = 0

=> \(1-a+b=0\)

=> \(-a+b=-1\)

=> \(-\left(a-b\right)=-1\)

=> \(a-b=1\)(1)

và Q (0) = 2

=> \(b=2\)(2)

Thế (2) vào (1), ta có:\(a-2=1\)

=> a = 3

Vậy \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)thì \(Q\left(x\right)=x^2-ax-b\)có Q (0) = 2 và Q (x) có nghiệm là 1.

a: Bậc là 2

Hệ số cao nhất là -7

Hệ số tự do là 1

b: Thay x=2 vào A=0, ta được:

\(a\cdot2^2-3\cdot2-18=0\)

\(\Leftrightarrow4a=24\)

hay a=6

c: Ta có: C+B=A

nên C=A-B

\(=6x^2-3x-18-1-4x+7x^2\)

\(=13x^2-7x-19\)