Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vào đây http://olm.vn/hoi-dap/question/89869.html
ƯCLN(a;b)=2940:210=14
vậy a=14m ; b=14n (m\(\ge\)n)
thay vào a.b=2940 ta được
14m=14n=2940
=>m.n=2904:(14.14)=15
vì m\(\ge\)n nên 15=5.3=15.1
với m=5; n=3 thì a=70; b=42
với m=15; n=1 thì a=210; b=1
Với công thức ab = ƯCLN﴾a; b﴿.BCNN﴾a; b﴿
nên suy ra ƯCLN﴾a; b﴿ = 2940 : 210 = 14
Vậy a = 14m ; b = 14 n ﴾m ≥ n﴿
Thay vào a.b = 2940 được:
14m.14n = 2940
=> m.n = 2940 : ﴾14.14﴿ = 15
Vì m ≥ n nên 15 = 5.3 = 15.1
‐Với m = 5 ; n = 3 thì a = 70 ; b = 42
‐Với m = 15 ; n = 1 thì a = 210 ; b =1
UCLN của 2 số là:2940:210=14
Ta có:a=14.m
b=14.n
Ta có:a .b=2940
hay 14.m.14.n=2940
196(m.n)=2940
m.n=2940:196
m.n=15
m 1 3
n 15 5
=>a 14 42
b 210 70
Vậy ta có các cặp số (a;b)hoặc(b;a)={(14:210);(42;70)}
Tick nha bạn!
Gọi số cần tìm là a và b ( giả sử a>b)
Ta có : a*b = 2940
Mà BCNN của chúng là 210
=> a chia hết cho b ( nếu a không chia hết cho b thì BCNN của chúng sẽ là :
a*b , mà a*b = 2940 nên a chỉ có thể chia hết cho b)
Vay a là 210 và b là 14
Với công thức ab = ƯCLN(a; b).BCNN(a; b)
nên suy ra ƯCLN(a; b) = 2940 : 210 = 14
Vậy a = 14m ; b = 14 n (m ≥ n)
Thay vào a.b = 2940 được:
14m.14n = 2940
=> m.n = 2940 : (14.14) = 15
Vì m ≥ n nên 15 = 5.3 = 15.1
-Với m = 5 ; n = 3 thì a = 70 ; b = 42
-Với m = 15 ; n = 1 thì a = 210 ; b =1
Ta có : \(\overline{ab}=UCLN\left(a,b\right),BCNN\left(a,b\right)\)
\(\Rightarrow UCLN\left(a,b\right)=ab:BCNN\left(a,b\right)\)
\(\Rightarrow UCLN\left(a,b\right)=2940:210=14\)
Ta có : \(a.b=2940\)
Thay số vào, ta có : \(a.b=14.a'.14.b'=\left(14;14\right).a'.b'=2940\)
Ta có :
a' | 1 | 3 | 5 | 15 |
b' | 15 | 5 | 3 | 1 |
\(\Rightarrow\)
a | 14 | 42 | 70 | 210 |
b | 210 | 70 | 42 | 14 |
Vậy các số a, b cần tìm là : 14 và 210; 42 và 70; 70 và 42; 210 và 14
gọi số cần tìm là a và b ( giả sử a>b)
ta có : a*b = 2940
mà BCNN của chúng là 210
=> a chia hết cho b ( nếu a không chia hết cho b thì BCNN của chúng sẽ là a*b , mà a*b = 2940 nên a chỉ có thể chia hết cho b)
=> a là 210 và b là 14