K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

Giải:

Theo đề ra, ta có:

\(x^3+y^3=4021\left(x^2-xy+y^2\right)\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow4021\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow x+y=4021\) (1)

Mà theo giả thiết ta có: \(x-y=1\) (2)

Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x=\left(4021+1\right):2\\y=\left(4021-1\right):2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)

Vậy x = 2011 và y = 2010.

Chúc bạn học tốt!

22 tháng 10 2017

Trần Quốc Lộc, Hung nguyen, Gia Hân Ngô, Phạm Hoàng Giang, Toshiro Kiyoshi, @Aki Tsuki, @Trương Tú Nhi, ...

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

15 tháng 6 2022

\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)

\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)

\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)

\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)

đến đây giải hơi bị khổ =))

5 tháng 5 2017

a) A = -1;                        b) B = ( x   +   y ) 3  =1.