Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2\(x\) = 3y ⇒ \(\dfrac{x}{3}\) = \(\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}\) = \(\dfrac{y}{2}\) = \(\dfrac{x-y}{3-2}\) = \(\dfrac{-15}{1}\) = -15
⇒ \(x\) = -15 \(\times\) 3 = -45; y = -15 \(\times\) 2 = -30
Kết luận \(x\) = -45; y = -30
x:y=5:6
=>x/y=5/6
=>x/5=y/6
=>2x/10=3y/18=(2x+3y)/(10+18)=56/28=2 (tính chất dãy tỉ số = nhau)
2x/10=2
=>x/5=2=>x=10
3y/18=2
=>y/6=2=>y=12
vậy x=10 và y=12
Ta có : 4x = 3y => \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{3}}\)=> \(\frac{2x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{2x+y}{\frac{1}{2}+\frac{1}{3}}=\frac{10}{\frac{5}{6}}=12\)
Từ đó suy ra x = 3,y = 4
\(4x=3y\Rightarrow\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{3}}\)và 2x + y = 10
\(\Rightarrow\frac{2x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}\)và 2x + y = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{2x+y}{\frac{1}{2}+\frac{1}{3}}=\frac{10}{\frac{5}{6}}=12\)
\(\frac{2x}{\frac{1}{2}}=12\Rightarrow2x=6\Rightarrow x=3\)
\(\frac{y}{\frac{1}{3}}=12\Rightarrow y=4\)
\(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\)
\(\frac{x}{2.6}=\frac{2y}{3.6}=\frac{3z}{4.6}\)
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{8}=\frac{x-y-z}{12-9-8}=\frac{100}{-5}=-20\)
\(\Rightarrow x=-240;y=-180;z=-160\)
\(x=3y=2z\)
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)
Rồi thế vào là ra thôi :
\(\frac{2x}{2}=6\Rightarrow x=..........\)
Rồi tương tự thôi
Ta có : `2x=3y=>x/3 =y/2` và `x-y=6`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=y/2 =(x-y)/(3-2)=6/1=6`
`=>x/3=6=>x=6.3=18`
`=>y/2=6=>y=6.2=12`
Vậy `x=18;y=12`
Ta có 2x = 3y
⇒ 2x - 3y = 0
2x - 2y - y = 0
2( x - y ) - y = 0
12 - y = 0
y = 12
Ta được 2x = 12 . 3 = 36 ⇒ x = 18
Vậy x = 18; y = 12