Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Gọi hai số dương lần lượt là x và y
Theo đề bài ta có : \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\)
hay \(35\left(x+y\right)=210\left(x-y\right)=12\left(x\cdot y\right)\)
Mà \(BCNN\left(35,210,12\right)=420\)
=> \(\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12\left(x\cdot y\right)}{420}\)
=> \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{x\cdot y}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
+)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\)(1)
+) \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\)(2)
=> Từ (1) và (2) => \(\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\Rightarrow\orbr{\begin{cases}x=7k\\y=5k\end{cases}}\)
=> \(xy=7k\cdot5k=35k^2\)
=> \(35k^2=35\)
=> \(k^2=1\)
=> k = 1(loại âm vì đề bài cho 2 số dương)
Do đó : \(\frac{x}{7}=1\Rightarrow x=7\)
\(\frac{y}{5}=1\)=> \(y=5\)
Vậy x = 7,y = 5
1. Câu hỏi của I will shine on the sky - Toán lớp 7 - Học toán với OnlineMath
bài sai đề hay sao á, mik lớp 8 giải hổng ra
kết bạn và bình chọn cho mik nhé
Ta cần tìm hai số dương a và b sao cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=1\)Nhân hai vế với ab được a + b + 1 = ab . Biến đổi thành
a.(1 - b) - (1 - b) + 2 = 0 \(\Leftrightarrow\)(1 - b).(a - 1) + 2 = 0 \(\Leftrightarrow\left(a-1\right).\left(b-1\right)=2\)
Suy ra : a - 1 = 1 và b-1 = 2 Tức là a = 2 và b = 3 . (Vai trò a, b bình đẳng nên a = 3 , và b = 2 ) . Hai phân số cần tìm là 1/2 và 1/3.
Gọi 3 p/s tối giản cần tìm là \(\frac{a}{b};\frac{c}{d};\frac{e}{f}\)
Theo bài ra ta có:\(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=15\frac{83}{120}=\frac{1883}{120}\left(1\right)\)
\(a:c:e=5:7:11\Leftrightarrow\frac{a}{5}=\frac{c}{7}=\frac{e}{11}\)
Đặt các tỉ số trên=p\(\Rightarrow a=5p;c=7p;e=11p\left(2\right)\)
\(b:d:f=\frac{1}{\frac{1}{4}}:\frac{1}{\frac{1}{5}}:\frac{1}{\frac{1}{6}}=4:5:6\Leftrightarrow\frac{b}{4}=\frac{d}{5}=\frac{f}{6}\)
Đặt các tỉ số trên=q\(\Rightarrow b=4q;d=5q;f=6q\left(3\right)\)
Từ (1) và (2) và (3)
\(\Rightarrow\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=\frac{5p}{4q}+\frac{7p}{5q}+\frac{11p}{6q}=\frac{1883}{120}\)
\(\Rightarrow\frac{5}{4}.\frac{p}{q}+\frac{7}{5}.\frac{p}{q}+\frac{11}{6}.\frac{p}{q}=\left(\frac{5}{4}+\frac{7}{5}+\frac{11}{6}\right).\frac{p}{q}=\frac{1883}{120}\)
\(\Rightarrow\frac{269}{60}.\frac{p}{q}=\frac{1883}{120}\Rightarrow\frac{p}{q}=\frac{7}{2}\)
Do đó \(\frac{a}{b}=\frac{5}{4}.\frac{7}{2}=\frac{35}{8};\frac{c}{d}=\frac{7}{5}.\frac{7}{2}=\frac{49}{10};\frac{e}{f}=\frac{11}{6}.\frac{7}{2}=\frac{77}{12}\)