Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Gọi 2 số cần tìm là a và b lần lượt là số t1 và t2 , ta có hpt :
5a+4b=18040
3a-2b=2002
giải hpt ta được a=2004;b=2005
b) Gọi số tự nhiên cần tim là ab (nhớ gạch ở trên ab đó) ;(a;b thuộc N;0<a"<9;0<b'<9)
theo đề bài ta có :
ab=4(a+b)
ba-ab=36
=>a=4;b=8 hay ab=48
nhớ các chữ ab hay ba có gạch ở trên đầu đó
Lời giải:
Gọi hai số cần tìm là $a$ và $b$. Theo bài ra ta có:
\(\left\{\begin{matrix}
2a-3b=9\\
a^2-b^2=119\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
2a=3b+9\\
(2a)^2-(2b)^2=476\end{matrix}\right.\)
\(\Rightarrow (3b+9)^2-4b^2=476\)
\(\Leftrightarrow 5b^2+54b-395=0\)
$\Leftrightarrow (b-5)(5b+79)=0$
$\Rightarrow b=5$ hoặc $b=-\frac{79}{5}$
Với $b=5$ thì $a=\frac{3b+9}{2}=12$
Với $b=\frac{-79}{5}$ thì $a=\frac{3b+9}{2}=\frac{-96}{5}$
Đáp án A
Gọi số thứ nhất là a; a ∈ N, số thứ hai là b; b ∈ N Vì hai lần số thứ nhất hơn ba lần số thứ hai là 9 nên ta có:
Vì hiệu các bình phương của chúng bằng 119 nên ta có phương trình:
Vậy số lớn hơn là 12.