Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
là \(4x+\dfrac{1}{x^2}+2x+2\) hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0
Ta có :
\(A=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\) có GTNN là - 1 tại x = - 2
\(A=\frac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\) có GNLN là 4 tại x = 1/2
đặt \(A=\frac{4x+3}{x^2+1}=a\)
<=>ax2+a=4x+3
<=>ax2-4x+a-3=0
\(\Rightarrow\Delta=16-4\left(a-3\right)a\ge0\)
\(\Leftrightarrow4a^2-12a-16\le0\)
\(\Leftrightarrow\left(2a-3\right)^2-25\le0\)
\(\Leftrightarrow\left(2a+2\right)\left(2a-8\right)\le0\)
\(\Leftrightarrow\hept{\begin{cases}2a+2\ge0\\2a-8\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ge-1\\a\le4\end{cases}}}\)
Vậy Min A=-1;Max A=4
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
Ta có
\(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\)
Áp dụng bất đẳng thức cô si cho 2 số không âm ta có
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\)
=>\(1+\frac{1}{\sqrt{x}}+\sqrt{x}\ge3\)
dấu bằng xảy ra <=>x=1
Ta có \(D=\frac{4x+3}{x^2+1}=\frac{x^2+4x+4-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1.\) Dấu bằng xảy ra khi và chỉ khi \(x=-2.\) Vậy giá trị bé nhất của D là \(-1.\)
Mặt khác, ta có \(D=\frac{4x+3}{x^2+1}=\frac{-\left(4x^2-4x+1\right)+4\left(x^2+1\right)}{x^2+1}=\frac{-\left(2x-1\right)^2}{x^2+1}+4\le4.\) Dấu bằng xảy ra khi và chỉ \(x=\frac{1}{2}\). Vậy giá trị lớn nhất của D là \(4.\)
\(D=\frac{x^2+4x+4-x^2-1}{x^2+1}\)ai thông minh tự giải tiếp nha