K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

A = x( 6 - x ) + 74 + x

A = 6x - x+ 74 + x

A = - x+ 7x + 74

A = - ( x- 7x - 74 )

A = - [ x- 2 . 7 / 2 + ( 7 / 2 )- ( 7 / 2 )- 74 ]

A = - ( x - 7 / 2 )- 345 / 2 \(\le\)- 345 / 2

Dấu= xảy ra \(\Leftrightarrow\)x - 7 / 2 = 0

                       \(\Rightarrow\)x              = 7 / 2

Vậy : Max A = - 345 / 2 \(\Leftrightarrow\)x = 7 / 2

28 tháng 10 2019

\(x\left(x-6\right)+74+x\)

\(=x^2-6x+74+x\)

\(=x^2-5x+74\)

\(=\left(x^2-2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{271}{4}\)

\(=\left(x-\frac{5}{2}\right)^2+\frac{271}{4}\ge\frac{271}{4}\)

Dấu '' = '' xảy ra 

\(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy..................

P/s : chưa kt lại bài nên sai bỏ qua

1: \(A=\left(x-1\right)^2-10\ge-10\)

Dấu '=' xảy ra khi x=1

2: \(B=-\left|x-1\right|-2\cdot\left(2y-1\right)^2+100\le100\)

Dấu '=' xảy ra khi x=1 và y=1/2

`(x-1)^2 >=0 => (x-1)^2 - 10 >= -10`

Dấu bằng xảy ra khi `x = 1`.

Vì `-|x-1| <=0, -2(2y-1)^2 <= 0`

`=> -|x-1| - 2(2y-1)^2 + 100 <= 100`

Dấu bằng xảy ra `<=> x = 1, y = 1/2`.

17 tháng 4 2017

\(D=\dfrac{x^2}{x-2}\left(\dfrac{x^2+4-4x}{x}\right)+3\)

\(D=\dfrac{x^2}{x-2}\dfrac{\left(x-2\right)^2}{x}+3\)

\(D=x\left(x-2\right)+3\)

\(D=x^2-2x+1+2\)

\(D=\left(x-1\right)^2+2\ge2\)

Dấu"=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

Vậy MinD là 2 \(\Leftrightarrow x=1\)

2 tháng 11 2016

Hiện tại tớ chưa tìm được cách nào hay hơn (Cách này thường là lớp 6 dùng)

Ta có \(\sqrt{6-x^2}\ge0\Rightarrow2 +\sqrt{6-x^2}\ge2\)

Vậy để \(\frac{1}{2+\sqrt{6-x^2}}\) có giá trị lớn nhất thì \(2+\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow6-x^2\) có giá trị bé nhất mà số đó lại lớn hơn 0 \(\Rightarrow x=\sqrt{6}\).

Vậy giá trị lớn nhất là \(\frac{1}{2}\)

Tương tự thì để giá trị bé nhất thì \(2+\sqrt{6-x^2}\) có giá trị lớn nhất và giá trị này = \(\frac{1}{2+\sqrt{6}}\)

 

30 tháng 12 2016

Như Nam có câu trả lời hay đó !!!

Vừa zễ hiểu, vừa zễ làm !

Thanks

28 tháng 7 2018

\(C=\frac{30}{4x-4x^2-6}=\frac{-30}{4x^2-4x+6}=\frac{-30}{\left(2x-1\right)^2+5}\)

Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+5\ge5\Rightarrow\frac{1}{\left(2x-1\right)^2+5}\le\frac{1}{5}\Rightarrow C=\frac{-30}{\left(2x-1\right)^2+5}\ge\frac{-30}{5}=-6\)

Dấu "=" xảy ra khi x=1/2

Vậy Cmin=-6 khi x=1/2

28 tháng 7 2018

\(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)

Vì \(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)

\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)

\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)

\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)

Dấu "=" xảy ra khi x=y=10

Vậy Emax = 100/201 khi x=y=10

28 tháng 10 2019

x^2 -4x+5+y^2+2y

=(x^2-4x+4)+(y^2+2y +1)

=(x-2)^2+(y+1)^2

vì (x-2 )^2 >= 0

(y+1)^2>=0

=)) (x-2)^2 +(y+1)^2 >=0

dấu "=" xảy ra 

<=>x-2 =0 =)x=2

và y+1=0 =)y=-1

vậy..........

28 tháng 10 2019

H = x2 - 4x + 5 + y2 + 2y

H = ( x- 4x + 4) + ( y+ 2y + 1 ) 

H = ( x - 2 )2 + ( y + 1 )\(\ge\)0

Dấu = xảy ra\(\Leftrightarrow\)x - 2 = 0 và y + 1 = 0

                        \(\Rightarrow\)x = 2 và y = - 1

Vậy : Min H = 0 \(\Leftrightarrow\)x = 2 và y = - 1

2 tháng 8 2016

tại sao học 24 ngu thế , bài sai rồi mà vẵn chọn ak , giáo viên trang này bị khùng điên cả ak , hay là mắt đui ko biết nhìn mà bấm ngu thế

20 tháng 8 2018

\(I=\left(x-2\right)^2+\left(x-5\right)^2\)

Ta có :

\(\left(x-2\right)^2\ge0\forall\) và \(\left(x-5\right)^2\ge0\forall x\)

=> \(I\ge0\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}\)

=> không có giá trị nào để I đạt giá trị nhỏ nhất .

20 tháng 8 2018

\(I=\left(x-2\right)^2+\left(x-5\right)^2\)

Đặt \(x-2=t\)

\(\Rightarrow I=t^2+\left(t-3\right)^2\)

\(I=t^2+t^2-6t+9\)

\(I=2t^2-6t+9\)

\(I=2.\left(t^2-2.t.1,5+2,25\right)+4,5\)

\(I=2.\left(t-1,5\right)^2+4,5\)

Ta có: \(2.\left(t-1,5\right)^2\ge0\forall t\)

\(\Rightarrow2.\left(t-1,5\right)^2+4,5\ge4,5\forall t\)

\(I=4,5\Leftrightarrow2.\left(t-1,5\right)^2=0\Leftrightarrow t-1,5=0\Leftrightarrow t=1,5\)

\(\Rightarrow x-2=1,5\)

\(\Rightarrow x=3,5\)

Vậy \(I_{min}=4,5\Leftrightarrow x=3,5\)

Tham khảo nhé~

2 tháng 8 2016

\(\left(x-4\right)^2+\left(x-5\right)^2\)

\(=x^2-8x+16+x^2-10x+25=2x^2-18x+41\)

\(=2\left(x^2-9x+\frac{41}{2}\right)=2\left[x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\)

Vì \(\left(x-\frac{9}{2}\right)^2\ge0\)

nên \(2\left(x-\frac{9}{2}\right)\ge0\)

do đó \(2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Vậy \(Min_{\left(x-4\right)^2+\left(x-5\right)^2}=\frac{1}{2}\)khi \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)