K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

D = x - x2 + 3

D = - x2 + x + 3

D = - ( x- x - 3 )

D = - [ x- 2 . x . 1 / 2 + ( 1 / 2 )2 - ( 1 / 2 )2 - 3 ]

D = - [ ( x - 1 / 2 )2 - 13 / 4 ]

D = - ( x - 1 / 2 )2 + 13 / 4 \(\le\)13 / 4

Dấu " = " xảy ra \(\Leftrightarrow\)x - 1 / 2 = 0

                             \(\Rightarrow\)x              = 1 / 2

Max D = 13 / 4 \(\Leftrightarrow\)x = 1 / 2

6 tháng 12 2019

D=x-x^2+3

D= -[x^2 -x +1/4 ] + 13/4 

D=-(x-1/2)^2 +13/4 

Vì -(x-1/2)^2<=0 => D<=13/4

Dấu = xảy ra <=> x-1/2=0 <=> x=1/2

14 tháng 8 2020

Đặt:     \(A=\left(x-3\right)\left(x+3\right)+2\left(2x+1\right)^2\)

=>       \(A=x^2-9+2\left(4x^2+4x+1\right)\)

=>       \(A=x^2-9+8x^2+8x+2\)

=>       \(A=9x^2+8x-7\)

=>       \(A=\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\)

Có:      \(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)

=>      \(A\ge-\frac{79}{9}\)

DẤU "=" XẢY RA <=>     \(\left(3x+\frac{4}{3}\right)^2=0\)

<=>     \(x=-\frac{4}{9}\)

Vậy A min =     \(-\frac{79}{9}\)      <=>       \(x=-\frac{4}{9}\)

15 tháng 8 2020

( x - 3 )( x + 3 ) + 2( 2x + 1 )2

= x2 - 9 + 2( 4x2 + 4x + 1 )

= x2 - 9 + 8x2 + 8x + 2

= 9x2 + 8x - 7

= 9x2 + 8x + 16/9 - 79/9

= ( 3x + 4/3 )2 - 79/9

\(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)

Dấu " = " xảy ra <=> 3x + 4/3 = 0 => x = -4/9

=> GTNN của biểu thức = -79/9 <=> x =  -4/9

30 tháng 10 2016

(x-1)(x-2)(x-3)(x-4)+15

=(x2-5x+4)(x2-5x+6)+15

Đặt t=x2-5x+4 ta có:

t(t+2)+15=t2+2t+15

=t2+2t+1+14=(t+1)2+14\(\ge\)14

Dấu = khi t=-1 => x2-5x+4=-1 =>x=\(\frac{5\pm\sqrt{5}}{2}\)

Vậy....

8 tháng 8 2016

\(D=\frac{x^2+2}{x^2+1}=\frac{x^2+1+1}{x^2+1}=\frac{x^2+1}{x^2+1}+\frac{1}{x^2+1}=1+\frac{1}{x^2+1}\)

D đạt giá trị lớn nhất

<=> \(\frac{1}{x^2+1}\) đạt giá trị lớn nhất

<=> x2 + 1 đạt giá trị nhỏ nhất

x2 lớn hơn hoặc bằng 0

x2 + 1 lớn hơn hoặc bằng 1

\(\frac{1}{x^2+1}\le1\)

\(1+\frac{1}{x^2+1}\le2\)

Vậy Max D = 2 khi x = 0

19 tháng 9 2016

\(D=\frac{x^2+}{x^2+1}\)

16 tháng 8 2017

\(A=4-x^2+3\)

\(=-x^2+7\le7\)

Khi x=0

\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

Đặt \(t=x^2+5x+4\) thì

\(=t\left(t+2\right)=t^2+2t+1-1\)

\(=\left(t+1\right)^2-1\ge-1\)

16 tháng 8 2017

Khi x=0

Đặt  thì

28 tháng 6 2019

 A= 1/(x^2+2x+3)

Ta có x^2+2x+3=(x+1)^2 +2

Vì (x+1) ^2 \(\ge\)0 với mọi x

=> (x+1)^2 +2\(\ge\)2 với mọi x

=> vậy GTLN của 1/(x^2+2x+3) =1/2

Dấu bằng xảy ra khi x+1=0 => x=-1

28 tháng 6 2019

B= 1/(x^2 +x+1)

Ta có : x^2 +x+ 1 =(x^2+x+1/4)+3/4

= ( x+1/2)^2 +3/4

Vì (x+1/2)^2 \(\ge\)0 với mọi x

=> (x+1/2)^2 +3/4 \(\ge\)3/4

Vậy GTLN của 1/(x^2+x+1) =3/4

Dấu "=" xảy ra khi (x+1/2)=0 => x=1/2

31 tháng 5 2016

1) \(C=-\left(x^2-6x+9\right)+5\)

\(\Leftrightarrow C=-\left(x-3\right)^2+5.\)

Vậy GTLN của C là 5 <=> x=3

3) \(E=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+5\)

\(E=-\left(x+2\right)^2-\left(y-1\right)^2+5\)

Vậy GTNN của E bằng 5 <=> x=-2 và y=1

31 tháng 5 2016

Dương: Câu c là GTLN em nhé :)

b. Ta chia ra thành các trường hợp:

- Với \(x\ge3,D=\left(x-3\right)\left(2-x+3\right)=\left(x-3\right)\left(5-x\right)=-x^2+8x-15=1-\left(x-4\right)^2\le1\)

- Với \(x< 3,D=\left(3-x\right)\left(2-3+x\right)=\left(3-x\right)\left(x-1\right)=-x^2+4x-3=1-\left(x-2\right)^2\le1\)

Vậy GTLN của D = 1 khi x = 4 hoặc x = 2.

Chúc em học tốt :))