Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=|2014-2x|+|2016-2x|\)
\(=|2014-2x|+|2x-2016|\ge|2014-2x+2x-2016|\)
Hay \(B\ge2\)
Dấu"="xảy ra \(\Leftrightarrow\left(2014-2x\right)\left(2x-2016\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}2014-2x\ge0\\2x-2016\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2014-2x< 0\\2x-2016< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\le2014\\2x\ge2016\end{cases}\left(loai\right)}\)hoặc\(\hept{\begin{cases}2x>2014\\2x< 2016\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1007\\x< 1008\end{cases}}\)
\(\Leftrightarrow1007< x< 1008\)
Vậy \(B_{min}=2\)\(\Leftrightarrow1007< x< 1008\)
\(\left|x-y-5\right|+\left(y-3\right)^{2022}+2021\ge2021\forall x,y\)
Dấu '=' xảy ra khi y=3 và x=8
Sửa: \(Đk:x\ge0\)
\(C=1-\dfrac{1}{\sqrt{x}+2022}\ge1-\dfrac{1}{0+2022}=\dfrac{2021}{2022}\\ C_{min}=\dfrac{2021}{2022}\Leftrightarrow x=0\)
\(C=\dfrac{\sqrt{x}+2022}{\sqrt{x}+2022}-\dfrac{1}{\sqrt{x}+2022}=1-\dfrac{1}{\sqrt{x}+2022}\)
Do \(\sqrt{x}+2022\ge2022\Leftrightarrow\dfrac{1}{\sqrt{x}+2022}\le\dfrac{1}{2022}\Leftrightarrow-\dfrac{1}{\sqrt{x}+2022}\ge-\dfrac{1}{2022}\)
\(\Leftrightarrow C=1-\dfrac{1}{\sqrt{x}+2022}\ge1-\dfrac{1}{2022}=\dfrac{2011}{2022}\)
Dấu"=" xảy ra \(\Leftrightarrow x=0\)
Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}=\frac{x-y+x+y}{16}=\frac{2x}{16}=\frac{x}{8}=\frac{25x}{200}=\frac{xy}{200}\)
Suy ra: \(25x=xy\Rightarrow y=25\)
Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}\)
Suy ra: \(13x-13y=3x+3y\)
Thế y vào đẳng thức trên:
\(13x-325=3x+75\)
Suy ra: \(10x=325+75=400\Rightarrow x=40\)
Vậy ........
\(M=2021+\left(x-2022\right)^{2022}\ge2021\forall x\)
Dấu '=' xảy ra khi x=2022
bạn có thể lý giải chi tiết từng bước đc ko?