Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ap dung cong thuc: a/b = c/d <=> ad= bc <=> c = ad/b
A = (4x2-7x+3)(x2+2x+1)/(x2-1)
cái này mk làm ở câu dưới của bạn r` đó -_-" nèCâu hỏi của Phạm Hoa - Toán lớp 8 - Học toán với OnlineMath
a, =(x+2)*(y+2*x)
= (88+2)(y+2.-76)
= 90*y-6660
b, = (x-7)*(y+x)
\(\left(7\frac{3}{5}-7\right)\left(2\frac{2}{5}+7\frac{3}{5}\right)\)
= 3/5 . 10
=6
k cho tớ nha :))))))
tr 10h à còn sớm
P=x2 - 2x + 5
=x2-2x+1+4
=(x-1)2+4
Ta thấy:\(\left(x-1\right)^2+4\ge0+4=4\)
Dấu = khi x=1
Vậy Pmin=4 <=>x=1
Q= 2x2 -6x
\(=2x^2-6x+\frac{9}{2}-\frac{9}{2}\)
\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}\)
\(=2\left(x-\frac{3}{2}\right)\left(x-\frac{3}{2}\right)-\frac{9}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Ta thấy:\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge0-\frac{9}{2}=-\frac{9}{2}\)
Dấu = khi x=3/2
Vậy Qmin=-9/2 <=>x=3/2
P = x2 - 2x + 5 = x(x - 2) + 5 nhỏ nhất khi x(x - 2) nhỏ nhất .
Xét x(x - 2) < 0 (để nhỏ nhất) thì x và x - 2 khác dấu mà x > x - 2 nên x > 0 > x - 2 => 2 > x > 0 => x = 1 => x(x - 2) = -1
Vậy P min = -1 + 5 = 4
Q = 2x2 - 6x = 2x(x - 3) nhỏ nhất khi x(x - 3) nhỏ nhất
Xét x(x - 3) < 0 (để nhỏ nhất) thì x và x - 3 khác dấu mà x > x - 3 nên x > 0 > x - 3 => 3 > x > 0 => x = 1;2
Ta thấy x(x - 3) = -2 tại x = 1 và x = 2 nên [x(x - 3)]min = -2 => Qmin = -2.2 = -4
a) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow-x^2-3x+10=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
b) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x^3-8\right)-\left(6x^2-12x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-6x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-6x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
c)\(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left[3\left(x+1\right)\right]^2=0\)
\(\Leftrightarrow\left(4x-3x-1\right)\left(4x+3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{7}\end{cases}}}\)
d) \(x^3+x=0\)
\(\Leftrightarrow x^2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
e)\(x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
\(M=x^2+y^2-xy-2x-2y+2\)
\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)
\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)
"=" khi x=y=2
Vậy Min M là -2 khi x=y=2
\(M=x^2+y^2-xy-2x-2y+2\)
\(4M=4x^2+4y^2-4xy-8x-8y+8\)
\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)
\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)
\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)
\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)
\(\Rightarrow4M\ge-8\)
\(\Leftrightarrow M\ge-2\)
Dấu "=" xảy ra khi :
\(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
=>Pmin=(x-1)2+4=4
<=>(x-1)2=0
<=>x-1=0
<=>x=1
Vậy Pmin=4 khi x=1
----------------------------------------------------------
\(Q=2x^2-6x=2\left(x^2-3x\right)=2\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow2\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
=>Qmin=\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}=-\frac{9}{2}\)
<=>\(2\left(x-\frac{3}{2}\right)^2=0\)
<=>\(\left(x-\frac{3}{2}\right)^2=0\)
<=>\(x-\frac{3}{2}=0\)
<=>\(x=\frac{3}{2}\)
Vậy Qmin=\(-\frac{9}{2}\) khi \(x=\frac{3}{2}\)
Cảm ơn bạn nha