Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
A, \(C=\left(x+2\right)^2+\left(\frac{y}{5}\right)^2-10\)
mà \(\left(x+2\right)^2\ge0,\left(\frac{y}{5}\right)^2\ge0\)
\(C=\left(x+2\right)^2+\left(\frac{y}{5}\right)^2-10\ge-10\)
Vậy C đạt GTNN là -10 khi \(\left(x+2\right)^2=0và\left(\frac{y}{5}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=0\end{cases}}\)
B, Vì \(4>0\)và\(\left(2x-3\right)^2+5>0\)
Nên \(D=\frac{4}{\left(2x-3\right)^2+5}\)có GTLN khi (2x-3)2+5 đạt GTNN
\(\left(2x-3\right)^2+5\ge5\)
\(\Rightarrow\left(2x-3\right)^2+5\)có GTNN là 5 khi 2x-3=0 => x=3/2
Thay vào D ta có: \(D=\frac{4}{5}\)
Vâỵ \(D_{max}=\frac{4}{5}\)khi\(x=\frac{3}{2}\)
\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0+0-10=-10\)
Dấu bằng xảy ra khi:
(x+2)2=0
<=>x+2=0
<=>x=-2
(y-1/5)2=0
<=>y-1/5=0
<=>y=1/5
Vậy MinC=-10 tại x=-2;y=1/5
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
Ta có:
(x+2)^2>=0
(y-1/5)^2>=0
=>C>=-10
=> Cmin=-10
Vậy : Cmin=-10 dấu "=" xảy ra khi" x=-2;y=1/5
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\\left(y-\frac{1}{5}\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
Mà để C có giá trị nhỏ nhất
\(\Rightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}\)Thì C có giá trị nhỏ nhất là C = -10
#Đức Lộc#