Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)
=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)
\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)
Vậy gtnn của M = 2018 đạt tại x = y = 0.
chào bn
4x=3y và x.y=12
4x=3y=>x/3=y/4 và x.y=12
Đặt k=x/3=y/4.ta có x=3k,y=4k
từ x.y=12=>3k.4k=12=>12k^2=12=>k^2=1=>k=± 1
Với k=1 thì x/3=y/4=1=>x=3,y=4
Với k=-1 thì x/3=y/4=-1=>x=-3,y=-4
\(\frac{x-3}{5}=\frac{x+4}{-2}\)
=> (x - 3). (-2) = 5(x + 4)
=> -2x + 6 = 5x + 20
=> -2x - 5x = 20 - 6
=> -7x = 14
=> x = 14 : (-7)
=> x = -2
x-3/5=x+4/-2
=> ﴾x ‐ 3﴿. ﴾‐2﴿ = 5﴾x + 4﴿
=> ‐2x + 6 = 5x + 20
=> ‐2x ‐ 5x = 20 ‐ 6 => ‐7x = 14 => x = 14 : ﴾‐7﴿
=> x = ‐2
> =<
Mình bày cách làm nhé ! Ở 3 câu,mỗi số hạng ở vế trái là trị tuyệt đối nên ko âm
=> Vế trái ko âm và bằng 0 (theo đề) chỉ khi mỗi số hạng bằng 0.Từ đó tìm được x,y
B=x2-2.x.1/2+1/4+3/4=(x-1/2)2+3/4>=3/4 VỚI MỌI X
DẤU "=" XẢY RA khi x-1/2=0<=>x=1/2
vậy minB=3/4 tại x=1/2