K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

\(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)

\(=\left|x-2014\right|+\left|2016-x\right|+\left|2015-x\right|\)

\(\ge\left|x-2014+2016-x\right|+\left|2015-x\right|\)

\(=2+\left|2015-x\right|\ge2\)

Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(x-2014\right)\left(2016-x\right)\ge0\\2015-x=0\end{cases}}\Rightarrow x=2015\)

8 tháng 2 2019

Ta có: \(\left|2014-x\right|+\left|2016-x\right|=\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|=2\)

Dấu "=" xảy ra <=> \(\left(2014-x\right)\left(2016-x\right)\ge0\)

                      <=> \(2014\le x\le2016\) (1)

Mặt khác \(\left|2015-x\right|\ge0\). Dấu "=" xảy ra <=> 2015-x = 0 <=> x = 2015 (2)

Ta thấy điều kiện (2) và (1) thỏa nhau

Nên kết hợp cả hai ta suy ra: GTNN của |2014-x|+|2015-x|+|2016-x| bằng 2 khi x = 2015

2 tháng 2 2017

a) 

\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)

b) 

cách 1: ghép tạo số hạng (x-2015)

E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015

hoặc

x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản

-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014

(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014

15 tháng 4 2016

Ta có : A = l2014 - x l + l 2015 - x l + l2016 - x l 
        => A = l2014 - x l + l2015 - x l + l x-2016 l   (Với x>2016 )
         => A >= l 2014 -x + x- 2016 l + l2015 -x l
        => A >= l2014-2016l + l2015-x l
       => A >= l -2 l + l2015 - x l
        => A >= 2 + l2015 - x l 
      Vì l2015 - x l >=0 Nên <=> A >= 2 +0
                                         => A >=2 
  Vậy Min A =2 <=> l2015 - x l = 0 
                         => 2015 - x= 0   => x= 2015-0 =2015
Vậy tại x= 2015 thì GTNN của A =2 

15 tháng 4 2016

sai rồi

9 tháng 5 2019

\(A=\left|x-2014\right|+\left|x-2015\right|+\left|x-2016\right|\)

\(=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)

Áp dụng BĐT, ta được:\(\left|x-2014\right|+\left|2016-x\right|+\left|2015-x\right|\ge\left|x-2014+2016-x\right|+\left|2015-x\right|=\left|2\right|+\left|2015-x\right|=2+0=2\)

Dấu ''='' xảy ra khi: \(\left|2015-x\right|=0\Rightarrow x=2015\)

Vậy GTNN của \(A=\left|x-2014\right|+\left|2015-x\right|+\left|x-2016\right|\) là 2 khi x= 2015

Cậu xem cách này sẽ gọn hơn nhé!: Câu hỏi của Trà My Kute - Toán lớp 7 | Học trực tuyến