Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-x\right)}\)
=\(\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
=\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(bđt svac-xơ)
Đặt x+y=a(a>2 do x,y>1)
=> \(D\ge\frac{a^2}{a-2}=\frac{\left(a^2-8a+16\right)+8\left(a-2\right)}{a-2}=\frac{\left(a-4\right)^2}{a-2}+8\ge8\)
Dấu "=" xảy ra <=> a=4 và x=y <=> x+y=4 và x=y <=> x=y=2
Vậy minD=8 <=>x=y=2
Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)
\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)
\(\Rightarrow T\ge1\)
Bài 2:
[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam
Cho x,y,z là ba số thực dương thỏa:x+y+z=3 .Tìm GTNN của biểu thức Q=x+1/1+y^2 +y+1/1+z^2 +z+1/1+x^2
\(2=3\sqrt{xy}+2\sqrt{xz}\le\dfrac{3}{2}\left(x+y\right)+x+z\)
\(\Rightarrow5x+3y+2z\ge4\)
\(A=5\left(\dfrac{xy}{z}+\dfrac{xz}{y}\right)+3\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+2\left(\dfrac{xz}{y}+\dfrac{yz}{x}\right)\)
\(A\ge5.2x+3.2y+2.2z=2\left(5x+3y+2z\right)\ge8\)
\(A_{min}=8\) khi \(x=y=z=\dfrac{2}{5}\)
\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}=x\left(1-\frac{y^2}{1+y^2}\right)+y\left(1-\frac{z^2}{1+z^2}\right)+z\left(1-\frac{x^2}{1+x^2}\right)\)
\(\Rightarrow A\ge x\left(1-\frac{y}{2}\right)+y\left(1-\frac{z}{2}\right)+z\left(1-\frac{x}{2}\right)=\left(x+y+z\right)-\frac{xy+yz+zx}{2}\ge3-\frac{\frac{9}{3}}{2}=\frac{3}{2}\)
Dau '=' xay ra khi \(x=y=z=1\)
Vay \(A_{min}=\frac{3}{2}\)khi \(x=y=z=1\)
Ta có \(x,y>1\) và thoả mãn \(A=\frac{x^3+y^3-x^2-y^2}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}.\)
Theo bất đẳng thức Cô-Si ta có \(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}\cdot4\left(y-1\right)}=4x,\)
và \(\frac{y^2}{x-1}+4\left(x-1\right)\ge2\sqrt{\frac{y^2}{x-1}\cdot4\left(x-1\right)}=4y.\)
Cộng hai bất đẳng thức lại ta được \(\frac{x^2}{y-1}+\frac{y^2}{x-1}+4\left(x+y-2\right)\ge4\left(x+y\right)\to A\ge8.\) Dấu bằng xảy ra khi và chỉ khi \(x=2\left(y-1\right),y=2\left(x-1\right)\to x=y=2.\) Vậy giá trị bé nhất của biểu thức \(A\)là \(8.\)