Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thì A=\(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|=1\) (bất đẳng thức về dâu giá trị tuyệt đối)
dấu = xảy ra <=> tích của chúng = nhau
ta có : |x+3|+|x-7|=|x+3|+|7-x|>=|x+3+7-x|=10
dấu "=" xảy ra khi (x+3)(7-x)>=0
giải ra ta đc: -3<=x<=7,
lại có |2x-5|>=0 dấu "=" xảy ra khi 2x-5=0=> x=2,5 (t/m)
=> A>=10+0+8=18 khi x=2,5
A = |x-7| + |x-5| = |7-x| + |x-5| ≥ |7-x + x-5| = 2
minA = 2
đạt khi 7-x và x-5 cùng dấu <=> (7-x)(x-5) ≥ 0 <=> 5 ≤ x ≤ 7
B = (2x-1)² - 3|2x-1| + 2 = |2x-1|² - 2.|2x-1|.(3/2) + 9/4 + 2 - 9/4
B = (|2x-1| - 3/2)² - 1/4 ≥ -1/4
minB = -1/4
đạt khi: |2x-1| = 3/2 <=> 2x-1 = 3/2 hoặc 2x-1 = -3/2 <=> x = 5/4 hoặc x = -1/4
C = |x² + x + 1| + |x² + x -12| = |x² + x + 1| + |12 - x² - x | ≥
≥ |x² + x + 1 + 12 - x² - x| = |13| = 13
minC = 13
đạt khi (x² + x +1) và (12 - x² - x) cùng dấu
<=> (x²+x+1)(12-x²-x) ≥ 0 <=> -1 ≤ x²+x ≤ 12 <=>
{x² + x + 1 ≥ 0
{x² + x -12 ≤ 0
<=>
(x + 4)(x - 3) ≤ 0 <=> -4 ≤ x ≤ 3
tóm lại:
minC = 13 đạt khi -4 ≤ x ≤ 3
-----------------
\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\)
b.\(B=7-\left(x+3\right)^2\le7\forall x\) " = " \(\Leftrightarrow x=-3\)
c.\(C=\left|2x-3\right|-13\ge-13\forall x\) " = " \(\Leftrightarrow x=\dfrac{3}{2}\)
d.\(D=11-\left|2x-13\right|\le11\forall x\) " = " \(\Leftrightarrow x=\dfrac{13}{2}\)
a) Ta có : A = |x - 3| + |x - 5|
= |3 - x| + |x - 5|
\(\ge\)|3 - x + x - 5|
= | - 2|
= 2
Dấu "=" xảy ra <=> (x - 3)(x - 5) = 0
=> \(\orbr{\begin{cases}x-3=0\\x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Vậy MinA = 2 khi x = 3 hoặc x = 5
b) Ta có B = |x + 1| + |7 - x|
\(\ge\)|x + 1 + 7 - x|
= |8|
= 8
Dấu "=" xảy ra <=> (x + 1)(x - 7) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=7\end{cases}}\)
Vậy MinB = 8 khi x = - 1 hoặc x = 7
THANK YOU XYZ !!!