K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

a) Ta có : A = |x - 3| + |x - 5| 

                   = |3 - x| + |x - 5|

                 \(\ge\)|3 - x + x - 5|

                   = | - 2|

                   = 2

Dấu "=" xảy ra <=> (x - 3)(x - 5) = 0

                           => \(\orbr{\begin{cases}x-3=0\\x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)

Vậy MinA = 2 khi x = 3 hoặc x = 5

b) Ta có B = |x + 1| + |7 - x| 

              \(\ge\)|x + 1 + 7 - x|

                =  |8|

                = 8

Dấu "=" xảy ra <=> (x + 1)(x - 7) = 0

                          => \(\orbr{\begin{cases}x+1=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=7\end{cases}}\)

Vậy MinB = 8 khi x = - 1 hoặc x = 7

27 tháng 10 2019

THANK YOU XYZ !!!

12 tháng 11 2017
GTNN của A=1 <=>2< hoặc =x < hoặc =3
24 tháng 12 2017

thì A=\(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|=1\) (bất đẳng thức về dâu giá trị tuyệt đối)

dấu = xảy ra <=> tích của chúng = nhau

16 tháng 7 2015

Nguyễn Nam Cao nói thế là ko được

17 tháng 10 2017

ta có : |x+3|+|x-7|=|x+3|+|7-x|>=|x+3+7-x|=10

dấu "=" xảy ra khi (x+3)(7-x)>=0

giải ra ta đc:  -3<=x<=7,

lại có |2x-5|>=0 dấu "=" xảy ra khi 2x-5=0=> x=2,5 (t/m)

=> A>=10+0+8=18 khi x=2,5

20 tháng 1 2019

\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)

    \(=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\)

   \(\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)

    \(=2\)

Dấu "=" xảy ra <=> x = 2015

Vậy .......

9 tháng 7 2017

A = |x-7| + |x-5| = |7-x| + |x-5| ≥ |7-x + x-5| = 2 

minA = 2 
đạt khi 7-x và x-5 cùng dấu <=> (7-x)(x-5) ≥ 0 <=> 5 ≤ x ≤ 7 

B = (2x-1)² - 3|2x-1| + 2 = |2x-1|² - 2.|2x-1|.(3/2) + 9/4 + 2 - 9/4 

B = (|2x-1| - 3/2)² - 1/4 ≥ -1/4 

minB = -1/4 
đạt khi: |2x-1| = 3/2 <=> 2x-1 = 3/2 hoặc 2x-1 = -3/2 <=> x = 5/4 hoặc x = -1/4 

C = |x² + x + 1| + |x² + x -12| = |x² + x + 1| + |12 - x² - x | ≥ 

≥ |x² + x + 1 + 12 - x² - x| = |13| = 13 

minC = 13 

đạt khi (x² + x +1) và (12 - x² - x) cùng dấu 
<=> (x²+x+1)(12-x²-x) ≥ 0 <=> -1 ≤ x²+x ≤ 12 <=> 
{x² + x + 1 ≥ 0 
{x² + x -12 ≤ 0 
<=> 
(x + 4)(x - 3) ≤ 0 <=> -4 ≤ x ≤ 3 
tóm lại: 
minC = 13 đạt khi -4 ≤ x ≤ 3 
-----------------

23 tháng 4 2022

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

23 tháng 4 2022

:o