K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 11 2021

\(y=\dfrac{x}{2}+\dfrac{18}{x}\ge2\sqrt{\dfrac{18x}{2x}}=6\)

\(y_{min}=6\) khi \(x=6\)

15 tháng 5 2019

Kĩ thuật cô si ngược ý

9 tháng 11 2016

a/ \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}=...\)

b/ \(\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=...\)

c/ \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=...\)

d/ \(\frac{x}{3}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=...\)

e/ \(\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5-5x+5x}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=...\)

f/ \(\frac{x^3+1}{x^2}=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge2\sqrt{\frac{x}{2}.\frac{x}{2}.\frac{1}{x^2}}=...\)

g/ \(\frac{x^2+4x+4}{x}=x+\frac{4}{x}+4\ge2\sqrt{x.\frac{4}{x}}+4=...\)

NV
25 tháng 2 2020

\(y=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)

Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Rightarrow x=\sqrt[5]{3}\)

12 tháng 5 2020

Theo đề: 0 < x < 1 => \(\left\{{}\begin{matrix}\frac{4}{x}>0\\\frac{9}{1-x}>0\end{matrix}\right.\)

⇔A = \(\frac{4}{x}\)+ \(\frac{9}{1-x}\)\(\frac{\left(2+3\right)^2}{x+1-x}\)= 25

Dấu "=" xảy ra ⇔ 9x = 4(1 - x) ⇔ x =\(\frac{2}{5}\) (TM)

12 tháng 5 2020

\(y=\frac{4}{x}+\frac{9}{1-x}\ge\frac{\left(2+3\right)^2}{x+1-x}=25\)

đẳng thức xảy ra khi x = 4/13

19 tháng 8 2020

Bài này có cách lập bảng biến thiên,nhưng mình sẽ làm cách đơn giản

Từ giả thiết \(x^2+y^2+z^2=1\Rightarrow0< x,y,z< 1\)

Áp dụng Bất Đẳng Thức Cosi cho 3 cặp số dương \(2x^2;1-x^2;1-x^2\)

\(\frac{2x^2+\left(1-x^2\right)+\left(1-x^2\right)}{3}\ge\sqrt[3]{2x^2\left(1-x^2\right)^2}\le\frac{2}{3}\)

\(\Leftrightarrow x\left(1-x^2\right)\le\frac{2}{3\sqrt{3}}\Leftrightarrow\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\Leftrightarrow\frac{x}{y^2+z^2}\ge\frac{3\sqrt{3}}{2}x^2\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{y}{z^2+x^2}\ge\frac{3\sqrt{3}}{2}y^2\left(2\right)\\\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}z^2\left(3\right)\end{cases}}\)

Cộng các vế (1), (2) và (3) ta được \(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{3}}{3}\)

4 tháng 1 2020

\(\Leftrightarrow Q=\frac{\left(x+\frac{y}{2}+\frac{y}{2}\right)^3}{xy^2}\)

Áp dụng BĐT Cô-si cho 3 số dương:

\(x+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{x.\frac{y}{2}.\frac{y}{2}}=3\sqrt[3]{\frac{xy^2}{4}}\)

\(\Rightarrow\left(x+\frac{y}{2}+\frac{y}{2}\right)^3\ge3.\frac{xy^2}{4}\)

\(\Rightarrow Q\ge\frac{3.\frac{xy^2}{4}}{xy^2}=\frac{3}{4}\)

\("="\Leftrightarrow x=\frac{y}{2}\Leftrightarrow y=2x\)

24 tháng 9 2019

tìm GTLN

NV
15 tháng 2 2020

\(A=\frac{4}{x}+\frac{\frac{1}{4}}{y}\ge\frac{\left(2+\frac{1}{2}\right)^2}{x+y}=5\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)

15 tháng 2 2020

Lam ro ra mot chut dc k ban minh k hieu gi ca

NV
12 tháng 6 2019

\(P=x+y+z+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge x+y+z+\frac{18}{x+y+z}\)

\(P\ge x+y+z+\frac{1}{x+y+z}+\frac{17}{x+y+z}\)

\(P\ge2\sqrt{\left(x+y+z\right)\frac{1}{\left(x+y+z\right)}}+\frac{17}{1}=19\)

\(P_{min}=19\) khi \(x=y=z=\frac{1}{3}\)