K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2021

\(C=\dfrac{1}{3x^2-4x+5}\) này à bạn , thì không có Min chỉ có MAx

\(=>C=\dfrac{1}{3\left(x-\dfrac{2}{3}\right)^2+\dfrac{11}{3}}\le\dfrac{1}{\dfrac{11}{3}}=\dfrac{3}{11}\) 

dấu"=" xảy ra<=>x=2/3

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

17 tháng 12 2017

sửa đề một chút :

\(4x^2+4x+5\)

\(=\left(2x\right)^2+2.2x+1+4\)

\(=\left(2x+1\right)^2+4\ge4\)

Dấu bằng xảy ra khi 2x + 1 = 0

                              2x       = -1

                                x       = -0,5

Vậy GTNN của biểu thức trên bằng 4 khi x bằng -0,5

17 tháng 12 2017

4,4375

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

3 tháng 5 2023

Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!

a:6x-5-9x^2

=-(9x^2-6x+5)

=-(9x^2-6x+1+4)

=-(3x-1)^2-4<=-4

=>A>=2/-4=-1/2

Dấu = xảy ra khi x=1/3

b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)

2x^2-3x+2=2(x^2-3/2x+1)

=2(x^2-2*x*3/4+9/16+7/16)

=2(x-3/4)^2+7/8>=7/8

=>-1/2x^2-3x+2<=-1:7/8=-8/7

=>B<=-8/7+2=6/7

Dâu = xảy ra khi x=3/4

31 tháng 10 2018

a)C=(x2-3x+1)2>=0

31 tháng 10 2018

c ) \(C=\left(x^2-3x+1\right)\left(x^2-3x+1\right)=\left(x^2-3x+1\right)^2\ge0\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x^2-3x+1=0\)

\(\Leftrightarrow x^2-3x+\dfrac{9}{4}-\dfrac{5}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy Min C là : \(0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)

d ) \(D=\left(x^2-4x+1\right)\left(x^2-4x+5\right)\)

\(=\left(x^2-4x+3-2\right)\left(x^2-4x+3+2\right)\)

\(=\left(x^2-4x+3\right)^2-4\ge-4\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy Min D là : \(-4\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1